Title: | Defective Ultrafine MnO(x) Nanoparticles Confined within a Carbon Matrix for Low-Temperature Oxidation of Volatile Organic Compounds |
Author(s): | Zheng Y; Liu Q; Shan C; Su Y; Fu K; Lu S; Han R; Song C; Ji N; Ma D; |
Address: | "Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China. State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "The development of catalysts for volatile organic compound (VOC) treatment by catalytic oxidation is of great significance to improve the atmospheric environment. Size-effect and oxygen vacancy engineering are effective strategies for designing high-efficiency heterogeneous catalysts. Herein, we explored the in situ carbon-confinement-oxidation method to synthesize ultrafine MnO(x) nanoparticles with adequately exposed defects. They exhibited an outstanding catalytic performance with a T(90) of 167 degrees C for acetone oxidation, which is 73 degrees C lower than that of bulk MnO(x) (240 degrees C). This excellent catalytic activity was primarily ascribed to their high surface area, rich oxygen vacancies, abundant active oxygen species, and good reducibility at low temperatures. Importantly, the synthesized ultrafine MnO(x) exhibited impressive stability in long-term, cycling and water-resistance tests. Moreover, the possible mechanism for acetone oxidation over MnO(x)-NA was revealed. In this work, we not only prepared a promising material for removing VOCs but also provided a new strategy for the rational design of ultrafine nanoparticles with abundant defects" |
Keywords: | Carbon Catalysis *Nanoparticles Oxidation-Reduction Oxides Temperature *Volatile Organic Compounds; |
Notes: | "MedlineZheng, Yanfei Liu, Qingling Shan, Cangpeng Su, Yun Fu, Kaixuan Lu, Shuangchun Han, Rui Song, Chunfeng Ji, Na Ma, Degang eng Research Support, Non-U.S. Gov't 2021/03/23 Environ Sci Technol. 2021 Apr 20; 55(8):5403-5411. doi: 10.1021/acs.est.0c08335. Epub 2021 Mar 22" |