|
Plant Sci
Title: | "Metabolite analysis in Nymphaea 'Blue Bird' petals reveal the roles of flavonoids in color formation, stress amelioration, and bee orientation" |
|
Author(s): | Zhao Y; Zhou W; Chen Y; Li Z; Song X; Wang J; Tian D; Niu J; |
|
Address: | "Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants / Hainan Biological Key Laboratory for Germplasm Resources of Tropical Special Ornamental Plants, School of Forestry, Hainan University, Haikou, 570228, China. Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, 201602, China. Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants / Hainan Biological Key Laboratory for Germplasm Resources of Tropical Special Ornamental Plants, School of Forestry, Hainan University, Haikou, 570228, China. Electronic address: niujun@hainanu.edu.cn" |
|
Journal Title: | Plant Sci |
Year: | 2021 |
Volume: | 20210814 |
Issue: | |
Page Number: | 111025 - |
DOI: | 10.1016/j.plantsci.2021.111025 |
|
ISSN/ISBN: | 1873-2259 (Electronic) 0168-9452 (Linking) |
|
Abstract: | "In this study, metabolome of open petals (OP) and closed petals (CP) from Nymphaea 'Blue Bird' was firstly investigated. A total of 455 metabolites was identified in Nymphaea 'Blue Bird' petals, which was mainly composed of 100 flavonoids, 83 phenolic acids, 64 amino acids and derivatives, 60 lipids, 32 alkaloids, 32 organic acids, 24 nucleotides and derivatives, and 12 lignans and coumarins. By differential analysis, 192 metabolites were identified with variable importance in project >/= 1, among which 83 and 109 metabolites were up- and down-regulated in OP group, respectively. Further analysis (Log(2) fold change >/= 1) identified 26 and 7 metabolites exhibited significantly lower and higher contents in CP group, relative to OP group. Importantly, KEGG analysis indicated that flavonoid biosynthesis exhibited the most significant enrichment. qRT-PCR analysis indicated that the PAL, CHS, and HCDBR genes showed a significantly higher expression in OP group than in CP group. These data explain the increase of naringenin chalcone and phloretin in OP. However, there was no significant difference of total flavonoids between OP and CP groups. Considering the increase of H(2)O(2) content and ultraviolet (UV) absorption peak in OP, our results implied that diurnal stressful conditions induced the degradation of flavonoids, which contributed to environmental stress amelioration. Moreover, a higher absorption peak of 360-380 nm UV was observed in the extract liquor of OP. The sensitivity maximum of the UV-photoreceptor of bees is situated around 340-380 nm UV. This suggested, as noted for the maximum absorption of dihydrokaempferol in 340-370 nm, rhythmic accumulation and loss of these differential flavonoids in Nymphaea 'Blue Bird' petals might enhance UV pattern to some degree, influencing pollinator attraction" |
|
Keywords: | "Adaptation, Physiological/physiology Animals Bees Flavonoids/*biosynthesis Flowers/*chemistry/*metabolism Metabolome Nymphaea/*chemistry/*metabolism Pheromones/*metabolism Pigmentation/*physiology Secondary Metabolism/physiology Flavonoids Flower opening;" |
|
Notes: | "MedlineZhao, Ying Zhou, Weijuan Chen, Yan Li, Zhaoji Song, Xiqiang Wang, Jian Tian, Daike Niu, Jun eng Ireland 2021/10/09 Plant Sci. 2021 Nov; 312:111025. doi: 10.1016/j.plantsci.2021.111025. Epub 2021 Aug 14" |
|
|
|
|
|
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-01-2025
|