Title: | Investigation of Ground-Level Ozone and High-Pollution Episodes in a Megacity of Eastern China |
Author(s): | Zhao H; Wang S; Wang W; Liu R; Zhou B; |
Address: | "Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Fudan Tyndall Centre, Fudan University, Shanghai 200433, China" |
DOI: | 10.1371/journal.pone.0131878 |
ISSN/ISBN: | 1932-6203 (Electronic) 1932-6203 (Linking) |
Abstract: | "Differential Optical Absorption Spectroscopy (DOAS) was used for the long-term observation of ground-level ozone (O3) from March 2010 to March 2013 over Shanghai, China. The 1-hour average concentration of O3 was 27.2 +/- 17.0 ppbv. O3 level increased during spring, reached the peak in late spring and early summer, and then decreased in autumn and finally dropped to the bottom in winter. The highest monthly average O3 concentration in June (41.1 ppbv) was nearly three times as high as the lowest level recorded in December (15.2 ppbv). In terms of pollution episodes, 56 hourly samples (on 14 separate days) in 2010 exceeded the 1-hour ozone limit of 200 mug/m3 specified by the Grade II of the Chinese Ambient Air Quality Standards (CAAQS, revised GB 3095-2012). Utilizing the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the primary contribution to high ozone days (HODs) was identified as the regional transportation of volatile organic compounds (VOC) and high concentrations of O3 from the chemical industrial zone in the Jinshan district of Shanghai. HODs showed higher concentrations of HONO and NO2 than non-episode conditions, implying that HONO at high concentration during HODs was capable of increasing the O3 concentration. The photolysis rate of HONO was estimated, suggesting that the larger number of OH radicals resulting from high concentrations of HONO have a considerable impact on ozone concentrations" |
Keywords: | China Environmental Monitoring Environmental Pollution/analysis Ozone/*analysis Volatile Organic Compounds/analysis; |
Notes: | "MedlineZhao, Heng Wang, Shanshan Wang, Wenxin Liu, Rui Zhou, Bin eng Research Support, Non-U.S. Gov't 2015/06/30 PLoS One. 2015 Jun 29; 10(6):e0131878. doi: 10.1371/journal.pone.0131878. eCollection 2015" |