Title: | Flory-Huggins VOC Photonics Sensor Made of Cellulose Derivatives |
Author(s): | Zhang W; Xue M; Fan J; Qiu L; Zheng W; Liu Y; Meng Z; |
Address: | "School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China" |
Journal Title: | ACS Appl Mater Interfaces |
ISSN/ISBN: | 1944-8252 (Electronic) 1944-8244 (Linking) |
Abstract: | "As a widespread air pollutant, volatile organic compounds (VOCs) are harmful to the human body's skin, nervous system, and respiratory system. Low-cost, extensive, and continuous detection of VOCs is of great significance to human health. We infiltrated and coated cellulose acetate on the inverse opal photonic crystal skeleton of methylcellulose-polyvinyl alcohol-graphene oxide to construct a degradable, high-toughness cellulose VOC sensor. Cellulose acetate enhances the response to VOCs and achieves a highly selective response to acetone vapor due to the smaller Flory-Huggins parameter with acetone. This work proposes a general, simple, easy-to-use, and highly selective photonic crystal VOC sensor development strategy. Calculated from the Flory-Huggins solution theory, a suitable polymer was selected to modify the inverse opal photonic crystal framework and achieve high selectivity detection" |
Keywords: | 3D photonic crystal Flory-Huggins cellulose derivatives sensors vapor detection; |
Notes: | "PubMed-not-MEDLINEZhang, Wenxin Xue, Min Fan, Jing Qiu, Lili Zheng, Wenxiang Liu, Yangyang Meng, Zihui eng 2022/02/16 ACS Appl Mater Interfaces. 2022 Mar 2; 14(8):10701-10711. doi: 10.1021/acsami.1c22137. Epub 2022 Feb 15" |