Title: | High-Performance Cataluminescence Sensor Based on Nanosized V(2)O(5) for 2-Butanone Detection |
Author(s): | Zhang RK; Wang JX; Cao H; |
Address: | "Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China. School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China" |
DOI: | 10.3390/molecules25153552 |
ISSN/ISBN: | 1420-3049 (Electronic) 1420-3049 (Linking) |
Abstract: | "The development of high-performance sensors is of great significance for the control of the volatile organic compounds (VOCs) pollution and their potential hazard. In this paper, high crystalline V(2)O(5) nanoparticles were successfully synthesized by a simple hydrothermal method. The structure and morphology of the prepared nanoparticles were characterized by TEM and XRD, and the cataluminescence (CTL) sensing performance was also investigated. Experiments found that the as-prepared V(2)O(5) not only shows sensitive CTL response and good selectivity to 2-butanone, but also exhibits rapid response and recovery speed. The limit of detection was found to be 0.2 mg/m(3) (0.07 ppm) at a signal to noise ratio of 3. In addition, the linear range exceeds two orders of magnitude, which points to the promising application of the sensor in monitoring of 2-butanone over a wide concentration range. The mechanism of the sensor exhibiting selectivity to different gas molecules were probed by quantum chemistry calculation. Results showed that the highest partial charge distribution, lowest HOMO-LUMO energy gap and largest dipole moment of 2-butanone among the tested gases result in it having the most sensitive response amongst other VOCs" |
Keywords: | *Biosensing Techniques Butanones/*analysis Luminescent Measurements/instrumentation/*methods/standards Nanoparticles/*chemistry Reproducibility of Results Structure-Activity Relationship Volatile Organic Compounds/*chemistry 2-butanone V2o5 cataluminescen; |
Notes: | "MedlineZhang, Run-Kun Wang, Jing-Xin Cao, Hua eng 21605163/National Natural Science Foundation of China/ 2020B1515020026/Science Foundation for Distinguished Young Scholars of Guangdong/ 2019KTSCX068/Characteristic Innovation Project of Guangdong Province Ordinary University/ 2019GCZX012/the Project for Innovation and Strong School of Department of Education of Guangdong Province/ 201806040009, 201804010349/the Science and Technology Planning Project of Guangzhou/ Switzerland 2020/08/08 Molecules. 2020 Aug 4; 25(15):3552. doi: 10.3390/molecules25153552" |