Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractNew Insights on Volatile Components of Vanilla planifolia Cultivated in Taiwan    Next AbstractEmission characteristics of naphthalene from ship exhausts under global sulfur cap »

Molecules


Title:Effects of Different Extraction Methods on Vanilla Aroma
Author(s):Yeh CH; Chou CY; Wu CS; Chu LP; Huang WJ; Chen HC;
Address:"Taoyuan District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Taoyuan 327, Taiwan. Department of Pharmacy, China Medical University Hospital, Taichung 404, Taiwan. Department of Orthopedics, China Medical University Hospital, Taichung 404, Taiwan. Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan"
Journal Title:Molecules
Year:2022
Volume:20220719
Issue:14
Page Number: -
DOI: 10.3390/molecules27144593
ISSN/ISBN:1420-3049 (Electronic) 1420-3049 (Linking)
Abstract:"To establish the analytic conditions for examining the aroma quality of vanilla pods, we compared different extraction methods and identified a suitable option. We utilized headspace solid-phase microextraction (HS-SPME), steam distillation (SD), simultaneous steam distillation (SDE) and alcoholic extraction combined with gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) to identify volatile components of vanilla pods. A total of 84 volatile compounds were identified in this experiment, of which SDE could identify the most volatile compounds, with a total of 51 species, followed by HS-SPME, with a total of 28 species. Ten volatile compounds were identified by extraction with a minimum of 35% alcohol. HS-SPME extraction provided the highest total aroma peak areas, and the peak areas of aldehydes, furans, alcohols, monoterpenes and phenols compounds were several times higher than those of the other extraction methods. The results showed that the two technologies, SDE and HS-SPME, could be used together to facilitate analysis of vanilla pod aroma"
Keywords:Gas Chromatography-Mass Spectrometry/methods Odorants/analysis Solid Phase Microextraction/methods Steam/analysis *Vanilla *Volatile Organic Compounds/analysis Gc-ms Hs-spme Sde vanilla volatile components;
Notes:"MedlineYeh, Chih-Hsin Chou, Chia-Yi Wu, Chin-Sheng Chu, Lee-Ping Huang, Wei-Juan Chen, Hsin-Chun eng 111AS-4.2.2-FD-Z1 (1)/Council of Agriculture, Executive Yuan (Taiwan)/ Switzerland 2022/07/28 Molecules. 2022 Jul 19; 27(14):4593. doi: 10.3390/molecules27144593"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024