Title: | "Insight into aroma dynamic changes during the whole manufacturing process of chestnut-like aroma green tea by combining GC-E-Nose, GC-IMS, and GC x GC-TOFMS" |
Author(s): | Yang Y; Qian MC; Deng Y; Yuan H; Jiang Y; |
Address: | "Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China. Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA. Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China. Electronic address: 192168092@mail.tricaas.com. Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China. Electronic address: jiangyw@tricaas.com" |
DOI: | 10.1016/j.foodchem.2022.132813 |
ISSN/ISBN: | 1873-7072 (Electronic) 0308-8146 (Linking) |
Abstract: | "Processing is the crucial factor for green tea aroma quality. In this study, the aroma dynamic changes throughout the manufacturing process of chestnut-like aroma green tea were investigated with gas chromatography electronic nose (GC-E-Nose), gas chromatography-ion mobility spectrometry (GC-IMS), and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC x GC-TOFMS). GC-IMS identified 33 volatile compounds while GC x GC-TOFMS identified 211 volatile components. Drying exerted the greatest influence on the volatile components of chestnut-like aroma green tea, and promoted the generation of heterocyclic compounds and sulfur compounds which were commonly generated via the Maillard reaction during the roasting stage. A large number of heterocyclic compounds such as 1-methyl-1H-pyrrole, pyrrole, methylpyrazine, furfural, 2-ethyl-5-methylpyrazine, 1-ethyl-1H-pyrrole-2-carboxaldehyde, and 3-acetylpyrrole were newly formed during the drying process. This study also validated the suitability of GC-E-Nose combined with GC-IMS and GC x GC-TOFMS for tracking the changes in volatile components of green tea throughout the manufacturing process" |
Keywords: | Electronic Nose Gas Chromatography-Mass Spectrometry/methods *Odorants/analysis Pyrroles/analysis Tea/chemistry *Volatile Organic Compounds/analysis Chemometrics Chestnut-like aroma green tea Dynamic changes GC-E-Nose Gc-ims GCxGC-TOFMS; |
Notes: | "MedlineYang, Yanqin Qian, Michael C Deng, Yuliang Yuan, Haibo Jiang, Yongwen eng England 2022/04/17 Food Chem. 2022 Sep 1; 387:132813. doi: 10.1016/j.foodchem.2022.132813. Epub 2022 Mar 25" |