Title: | Feeding of pea leafminer larvae simultaneously activates jasmonic and salicylic acid pathways in plants to release a terpenoid for indirect defense |
Address: | "State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China" |
ISSN/ISBN: | 1744-7917 (Electronic) 1672-9609 (Linking) |
Abstract: | "The pea leafminer, Liriomyza huidobrensis, is an important pest species affecting ornamental crops worldwide. Plant damage consists of oviposition and feeding punctures created by female adult flies as well as larva-bored mines in leaf mesophyll tissues. How plants indirectly defend themselves from these two types of leafminer damage has not been sufficiently investigated. In this study, we compared the indirect defense responses of bean plants infested by either female adults or larvae. Puncturing of leaves by adults released green leaf volatiles and terpenoids, while larval feeding caused plants to additionally emit methyl salicylate and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT). Puncturing of plants by female adults induced increases in jasmonic acid (JA) and JA-related gene expressions but reduced the expressions of salicylic acid (SA)-related genes. In contrast, JA and SA and their-related gene expression levels were increased significantly by larval feeding. The exogenous application of JA+SA significantly triggered TMTT emission, thereby significantly inducing the orientation behavior of parasitoids. Our study has confirmed that larval feeding can trigger TMTT emission through the activation of both JA and SA pathways to attract parasitoids; however, TMTT alone is less attractive than the complete blend of volatiles released by infested plants" |
Keywords: | Animals Cyclopentanes/*metabolism Diptera/*physiology Feeding Behavior/physiology Larva/physiology Oviposition Oxylipins/*metabolism Phaseolus/metabolism Plant Defense Against Herbivory/*physiology Plant Leaves/metabolism Salicylates/metabolism Salicylic; |
Notes: | "MedlineYang, Jun-Nan Wei, Jia-Ning Kang, Le eng 2017YFD0200400/National Key Research and Development Program of China/ XDB11050600/Strategic Priority Research Program of the Chinese Academy of Sciences/ Australia 2020/05/21 Insect Sci. 2021 Jun; 28(3):811-824. doi: 10.1111/1744-7917.12820. Epub 2020 Jul 20" |