Title: | A curtain purification system based on a rabbit fur-based rotating triboelectric nanogenerator for efficient photocatalytic degradation of volatile organic compounds |
Author(s): | Yang D; Liu Z; Yang P; Huang L; Huang F; Tao X; Shi Y; Lei R; Cao J; Li H; Chen X; Bian Z; |
Address: | "MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China. bianzhenfeng@shnu.edu.cn. CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China. chenxiangyu@binn.cas.cn. College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China. Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China. Shanghai University of Electric Power, Shanghai 200090, China" |
ISSN/ISBN: | 2040-3372 (Electronic) 2040-3364 (Linking) |
Abstract: | "Efficient removal of air pollution caused by volatile organic compounds (VOCs) and particulate matter (PM) through distributed energy collected from the environment is an effective strategy to achieve both energy conservation and better air quality. Herein, a curtain purification system based on a rabbit fur-based rotary triboelectric nanogenerator (RR-TENG) and a collaborative photocatalysis technology was designed for indoor air purification. The high electrostatic field from RR-TENG enhances formaldehyde adsorption, while it can also efficiently adsorb PM(2.5) simultaneously. More interestingly, the ultrahigh electric field provided by RR-TENG promotes the separation of photogenerated electron-hole pairs of the g-C(3)N(4)/TiO(2) composite photocatalyst, generating more superoxide radicals (?naO(2)(-)), hydroxyl radicals (?naOH), and holes (h(+)) and thereby improving the photocatalytic efficiency. In a simulated reaction chamber of 9 L, the formaldehyde removal rate of the system can reach 79.2% within 90 min and RR-TENG rapidly reduces PM(2.5) from 999 mug m(-3) to 50 mug m(-3) within 60 s. This study proposes a curtain purification system integrating the function of energy collection and photocatalytic purification, which can be applied for improving air quality and human health" |
Notes: | "PubMed-not-MEDLINEYang, Dehong Liu, Zhaoqi Yang, Peng Huang, Ling Huang, Fengjiao Tao, Xinglin Shi, Yuxiang Lei, Rui Cao, Jiazhen Li, Hexing Chen, Xiangyu Bian, Zhenfeng eng England 2023/03/21 Nanoscale. 2023 Apr 6; 15(14):6709-6721. doi: 10.1039/d3nr00507k" |