Title: | Formaldehyde vapor produced from hexamethylenetetramine and pesticide: Simultaneous monitoring of formaldehyde and ozone in chamber experiments by flow-based hybrid micro-gas analyzer |
Author(s): | Yanaga A; Hozumi N; Ohira S; Hasegawa A; Toda K; |
Address: | "Department of Chemistry, Kumamoto University, Kumamoto 860-8555, Japan. Department of Architecture and Building Engineering, Kumamoto University, Kumamoto 860-8555, Japan. Department of Chemistry, Kumamoto University, Kumamoto 860-8555, Japan. Electronic address: todakei@sci.kumamoto-u.ac.jp" |
DOI: | 10.1016/j.talanta.2015.05.060 |
ISSN/ISBN: | 1873-3573 (Electronic) 0039-9140 (Linking) |
Abstract: | "Simultaneous analysis of HCHO and O3 was performed by the developed flow analysis system to prove that HCHO vapor is produced from solid pesticide in the presence of O3. HCHO is produced in many ways, including as primary emissions from fuel combustion and in secondary production from anthropogenic and biogenic volatile organic compounds by photochemical reactions. In this work, HCHO production from pesticides was investigated for the first time. Commonly pesticide contains surfactant such as hexamethylenetetramine (HMT), which is a heterocyclic compound formed from six molecules of HCHO and four molecules of NH3. HMT can react with gaseous oxidants such as ozone (O3) to produce HCHO. In the present study, a flow analysis system was developed for simultaneous analysis of HCHO and O3, and this system was used to determine if solid pesticides produced HCHO vapor in the presence of O3. HMT or the pesticide jimandaisen, which contains mancozeb as the active ingradient and HMT as a stabilizer was placed at the bottom of a 20-L stainless steel chamber. Air in the chamber was monitored using the developed flow system. Analyte gases were collected into an absorbing solution by a honeycomb-patterned microchannel scrubber that was previously developed for a micro gas analysis system (muGAS). Subsequently, indigotrisulfonate, a blue dye, was added to the absorbing solution to detect O3, which discolored the solution. HCHO was detected after mixing with the Hantzsch reaction reagent. Both gases could be detected at concentrations ranging from parts per billion by volume (ppbv) to 1000 ppbv with good linearity. Both HMT and jimandaisen emitted large amount of HCHO in the presence of O3" |
Keywords: | Flow injection analysis Formaldehyde Hexamethylenetetramine Mancozeb Micro gas analysis system (muGAS) Ozone; |
Notes: | "PubMed-not-MEDLINEYanaga, Akira Hozumi, Naruto Ohira, Shin-Ichi Hasegawa, Asako Toda, Kei eng Netherlands 2015/12/15 Talanta. 2016 Feb 1; 148:649-54. doi: 10.1016/j.talanta.2015.05.060. Epub 2015 May 27" |