Title: | Correlating micro/meso pore evolution and chemical structure variation in a mild thermal treatment of a subbituminite |
Author(s): | Xu S; Han Z; Wu R; Cheng J; Xu G; |
Address: | "State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China rwu@ipe.ac.cn gwxu@ipe.ac.cn. University of Chinese Academy of Sciences Beijing 100049 China. Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology Shenyang 110142 China" |
ISSN/ISBN: | 2046-2069 (Electronic) 2046-2069 (Linking) |
Abstract: | "This work investigates the evolution of micro/meso pores during a mild thermal treatment of subbituminous coal based on the observation of coal structure changes with the gradual detachment of organic matter from the coal. Pores in coal can be described as super-micropores (d < 1 nm), micropores (1 nm < d < 2 nm) and mesopores (2 nm < d < 50 nm). The decomposition of the carboxyl group at 200 degrees C decreases the super-micropore volume. A mild and sustained reaction takes place at 300 degrees C to gradually change the aromaticity and CH(2)/CH(3) ratio of the treated coal. The amount of micropore structure sharply decreases in the early stages of heating, while the amount of mesopore structure continuously decreases during the whole process. A dramatic reaction takes place at 400 degrees C to sharply change the aromaticity and CH(2)/CH(3) ratio of the treated coal, while the detachment of volatile compounds from the coal matrix caused an evident variation in the mesopore structure of the coal. The aromaticity and CH(2)/CH(3) ratio of coal organics are found to correlate with the volumes of super-micropores and mesopores, respectively. The super-micropores are identified as comprising the inter-layer distance between stacks of aromatic rings, and mesopores are the spaces between macromolecular aromatic rings which are inter-connected via aliphatic chains" |
Notes: | "PubMed-not-MEDLINEXu, Shipei Han, Zhennan Wu, Rongcheng Cheng, Jiguang Xu, Guangwen eng England 2018/03/09 RSC Adv. 2018 Mar 9; 8(18):9754-9761. doi: 10.1039/c7ra13215h. eCollection 2018 Mar 5" |