Title: | Evidence for directional selection acting on pheromone-binding proteins in the genus Choristoneura |
Address: | "Department of Ecology and Evolutionary Biology, Cornell University, San Diego, CA, USA" |
DOI: | 10.1093/oxfordjournals.molbev.a026335 |
ISSN/ISBN: | 0737-4038 (Print) 0737-4038 (Linking) |
Abstract: | "Patterns of nucleotide variation consistent with the action of natural selection have been discovered at a number of different gene loci. Here, pheromone-binding proteins (PBPs) are examined to determine if selection has acted to fix amino acid changes in PBPs in lineages in which pheromone changes have occurred. PBPs from five different species of moths in the genus Choristoneura were sequenced, along with the PBP of Argyrotaenia velutinana, which serves as an outgroup. Three independent major pheromone changes are represented within this group of five Choristoneura species. Two different lineages show evidence for selection based on polymorphism and divergence comparisons and comparisons of rates of replacement evolution to silent and noncoding evolution. Along one of these lineages, leading to Choristoneura fumiferana, there has been a change to an aldehyde pheromone from an acetate pheromone. The second branch does not appear to be associated with a major pheromone change. Other branches in the tree show a trend toward greater replacement fixation than expected under neutrality. This trend could reflect undetected selective events within this group of PBPs. Selection appears to have acted to fix amino acid changes in the PBP of moths from the genus Choristoneura, but it is not clear that this selection is due to pheromone changes between species" |
Keywords: | "Amino Acid Sequence Animals Carrier Proteins/*genetics Insect Proteins/*genetics Molecular Sequence Data Moths/*genetics *Phylogeny *Selection, Genetic Sequence Alignment Sequence Analysis, DNA Sequence Homology, Amino Acid;" |
Notes: | "MedlineWillett, C S eng Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. 2000/03/31 Mol Biol Evol. 2000 Apr; 17(4):553-62. doi: 10.1093/oxfordjournals.molbev.a026335" |