Title: | Location-Specific Control of Precursor Emissions to Mitigate Photochemical Air Pollution |
Author(s): | Wang Y; Bastien L; Jin L; Harley RA; |
Address: | "Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "The effects of precursor emission controls on air quality can vary greatly depending on where emission reductions occur. We use the adjoint of the Community Multiscale Air Quality (CMAQ) model to evaluate impacts of spatially targeted NO(x) emission reductions on odd oxygen (O(x) = O(3) + NO(2)). The air quality responses studied here include one population-weighted regionwide and three city-level receptors in Central California. We map high-priority locations for NO(x) control and their changes over decadal time scales. The desirability of NO(x)-focused emission control programs has increased between 2000 and 2022. We find for present-day conditions that reducing NO(x) emissions by 28% from targeted high-priority locations can achieve 60% of the air quality benefits of uniform NO(x) reductions at all locations. High-priority source locations are found to differ for individual city-level versus regionwide receptors of interest. While high-impact emission hotspots for improving city-level metrics are found within the city itself or closely adjacent, the spatial pattern of emission hotspots for improving regionwide air quality is more complex and requires comprehensive consideration of upwind sources. Results of this study can help to inform strategic decision-making at local and regional levels about where to prioritize emission control efforts" |
Keywords: | *Air Pollutants/analysis *Ozone/analysis Nitrogen Oxides/analysis *Volatile Organic Compounds/analysis *Air Pollution/prevention & control/analysis Oxygen Environmental Monitoring/methods adjoint sensitivity analysis location-specific management oxides of; |
Notes: | "MedlineWang, Yuhan Bastien, Lucas Jin, Ling Harley, Robert A eng Research Support, Non-U.S. Gov't 2023/06/17 Environ Sci Technol. 2023 Jul 4; 57(26):9693-9701. doi: 10.1021/acs.est.3c01934. Epub 2023 Jun 17" |