Title: | Behavior of Isocyanic Acid and Other Nitrogen-Containing Volatile Organic Compounds in The Indoor Environment |
Author(s): | Wang C; Mattila JM; Farmer DK; Arata C; Goldstein AH; Abbatt JPD; |
Address: | "School of Environmental Science and Engineering, Southern University of Science and Technology and Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen, 518055, China. Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada. Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States. Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States. Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "Isocyanic acid (HNCO) and other nitrogen-containing volatile chemicals (organic isocyanates, hydrogen cyanide, nitriles, amines, amides) were measured during the House Observation of Microbial and Environmental Chemistry (HOMEChem) campaign. The indoor HNCO mean mixing ratio was 0.14 +/- 0.30 ppb (range 0.012-6.1 ppb), higher than outdoor levels (mean 0.026 +/- 0.15 ppb). From the month-long study, cooking and chlorine bleach cleaning are identified as the most important human-related sources of these nitrogen-containing gases. Gas oven cooking emits more isocyanates than stovetop cooking. The emission ratios HNCO/CO (ppb/ppm) during stovetop and oven cooking (mean 0.090 and 0.30) are lower than previously reported values during biomass burning (between 0.76 and 4.6) and cigarette smoking (mean 2.7). Bleach cleaning led to an increase of the HNCO mixing ratio of a factor of 3.5 per liter of cleaning solution used; laboratory studies indicate that isocyanates arise via reaction of nitrogen-containing precursors, such as indoor dust. Partitioned in a temperature-dependent manner to indoor surface reservoirs, HNCO was present at the beginning of HOMEChem, arising from an unidentified source. HNCO levels are higher at the end of the campaign than the beginning, indicative of occupant activities such as cleaning and cooking; however the direct emissions of humans are relatively minor" |
Keywords: | "*Air Pollutants/analysis *Air Pollution, Indoor/analysis Cooking Cyanates Environmental Monitoring Gases Humans Isocyanates Nitrogen *Volatile Organic Compounds bleach cleaning indoor air isocyanic acid nitrogen containing VOCs organic isocyanates;" |
Notes: | "MedlineWang, Chen Mattila, James M Farmer, Delphine K Arata, Caleb Goldstein, Allen H Abbatt, Jonathan P D eng Research Support, Non-U.S. Gov't 2022/06/03 Environ Sci Technol. 2022 Jun 21; 56(12):7598-7607. doi: 10.1021/acs.est.1c08182. Epub 2022 Jun 2" |