Title: | A linear model relating breath concentrations to environmental exposures: application to a chamber study of four volunteers exposed to volatile organic chemicals |
Author(s): | Wallace L; Pellizzari E; Gordon S; |
Address: | "U.S. Environmental Protection Agency, Warrenton, Virginia 22091" |
Journal Title: | J Expo Anal Environ Epidemiol |
ISSN/ISBN: | 1053-4245 (Print) 1053-4245 (Linking) |
Abstract: | "A linear model relating levels of volatile organic chemicals (VOCs) in exhaled breath to personal exposures at environmental (parts per billion) levels has been developed and evaluated in a chamber study of four human volunteers. The purpose of the model is to allow estimation of VOC concentrations in the body from measurements of exposure, or conversely to estimate previous exposure from a measurement of exhaled breath. The model differs from previous models in considering long-term inhalation at low or moderate concentrations rather than instantaneous intake (as in drug administration) or intermittent exposure at high concentrations (as in occupational situations). The model is based on a mass balance approach using one or more compartments to represent distribution of the chemical in the body. The main observable parameters in the model are the residence times tau 1 in the compartments, their 'capacities' Ai, and the fraction f of the parent compound that is exhaled under equilibrium conditions. The basic equations for the one-, two-, three-, and n-compartment cases are derived. Solutions to these equations for the cases of a sudden constant high exposure, a sudden constant low exposure, and a linearly increasing exposure are provided. These solutions can be readily applied to more complex exposure scenarios. The chamber study suggests residence times on the order of a few minutes in the blood and 1-2 hr in the vessel-rich group of tissues. The design of the chamber study did not allow an estimate of the model parameters for fat; a subsequent chamber study has provided initial estimates of 50-100 hr. Field studies of personal exposures and breath concentrations of several hundred persons suggest values of f ranging from 0.1 for xylenes and ethylbenzene to about 0.9 for tetrachloroethylene" |
Keywords: | "Atmosphere Exposure Chambers Body Burden *Breath Tests Environmental Exposure/*analysis Humans Hydrocarbons/*analysis/blood/pharmacokinetics *Models, Biological Time Factors;" |
Notes: | "MedlineWallace, L Pellizzari, E Gordon, S eng England 1993/01/01 J Expo Anal Environ Epidemiol. 1993 Jan-Mar; 3(1):75-102" |