Title: | The arbuscular mycorrhizal fungus Funneliformis mosseae induces changes and increases the concentration of volatile organic compounds in Vitis vinifera cv. Sangiovese leaf tissue |
Author(s): | Velasquez A; Valenzuela M; Carvajal M; Fiaschi G; Avio L; Giovannetti M; D'Onofrio C; Seeger M; |
Address: | "Chemistry Department, Universidad Tecnica Federico Santa Maria, Avenida Espana, 1680, Valparaiso, Chile; Center of Biotechnology 'Dr. Daniel Alkalay Lowitt', Universidad Tecnica Federico Santa Maria, General Bari 699, Valparaiso, Chile. Electronic address: alexvelasquezsaez@gmail.com. Chemistry Department, Universidad Tecnica Federico Santa Maria, Avenida Espana, 1680, Valparaiso, Chile; Center of Biotechnology 'Dr. Daniel Alkalay Lowitt', Universidad Tecnica Federico Santa Maria, General Bari 699, Valparaiso, Chile. Electronic address: mvalenzuelao@yahoo.com. Chemistry Department, Universidad Tecnica Federico Santa Maria, Avenida Espana, 1680, Valparaiso, Chile; Center of Biotechnology 'Dr. Daniel Alkalay Lowitt', Universidad Tecnica Federico Santa Maria, General Bari 699, Valparaiso, Chile. Electronic address: marcela.carvajal@usm.cl. Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, Pisa, Italy. Electronic address: grazia.fiaschi@unipi.it. Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, Pisa, Italy; Interdepartmental Research Center Nutrafood - Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy. Electronic address: luciano.avio@unipi.it. Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, Pisa, Italy; Interdepartmental Research Center Nutrafood - Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy. Electronic address: manuela.giovannetti@unipi.it. Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, Pisa, Italy; Interdepartmental Research Center Nutrafood - Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy. Electronic address: claudio.donofrio@unipi.it. Chemistry Department, Universidad Tecnica Federico Santa Maria, Avenida Espana, 1680, Valparaiso, Chile; Center of Biotechnology 'Dr. Daniel Alkalay Lowitt', Universidad Tecnica Federico Santa Maria, General Bari 699, Valparaiso, Chile. Electronic address: michael.seeger@gmail.com" |
DOI: | 10.1016/j.plaphy.2020.06.048 |
ISSN/ISBN: | 1873-2690 (Electronic) 0981-9428 (Linking) |
Abstract: | "Arbuscular mycorrhizal fungi (AMF) are beneficial obligate symbionts of plant roots. Volatile organic compounds (VOCs) participate in plant communication and defence. The aim of this study was to analyse the effects of the arbuscular mycorrhizal fungus Funneliformis mosseae IMA1 on VOCs in Vitis vinifera cv. Sangiovese leaf tissue. Grapevine plants inoculated with F. mosseae IMA1 were incubated for 23 weeks. VOCs were extracted from leaves and identified using headspace solid-phase microextraction (HS-SPME) coupled to GC-MS. VOCs in leaf tissue were strongly enhanced (85%) by F. mosseae IMA1. The mycorrhizal fungus IMA1 modified the levels of specific VOCs synthesised in different anabolic pathways. An increase in volatiles that have been related to plant defences under pathogen/herbivore attack or linked to water stress, such as (E)-2-hexenal, 3-hexenal, geraniol, benzaldehyde and methyl salicylate, was observed in mycorrhizal plants. In contrast, some C(13)-norisoprenoids decreased strongly in mycorrhizal plants. The study of the effects of AMF on VOCs in grapevine plants may provide useful information to establish sustainable viticultural practices" |
Keywords: | Fungi/*physiology Mycorrhizae/physiology Plant Leaves/*chemistry Plant Roots/microbiology Vitis/*chemistry/microbiology Volatile Organic Compounds/*analysis (E)-2-hexenal Arbuscular mycorrhizal fungi Funneliformis mosseae Grapevine Methyl salicylate Vitis; |
Notes: | "MedlineVelasquez, Alexis Valenzuela, Miryam Carvajal, Marcela Fiaschi, Grazia Avio, Luciano Giovannetti, Manuela D'Onofrio, Claudio Seeger, Michael eng France 2020/08/20 Plant Physiol Biochem. 2020 Oct; 155:437-443. doi: 10.1016/j.plaphy.2020.06.048. Epub 2020 Jul 28" |