Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractActivated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes    Next AbstractLevels of exposure from drinking water »

PLoS One


Title:DISCO-SCA and properly applied GSVD as swinging methods to find common and distinctive processes
Author(s):Van Deun K; Van Mechelen I; Thorrez L; Schouteden M; De Moor B; van der Werf MJ; De Lathauwer L; Smilde AK; Kiers HA;
Address:"Department of Psychology, Katholieke Universiteit Leuven, Leuven, Belgium. katrijn.vandeun@ppw.kuleuven.be"
Journal Title:PLoS One
Year:2012
Volume:20120531
Issue:5
Page Number:e37840 -
DOI: 10.1371/journal.pone.0037840
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"BACKGROUND: In systems biology it is common to obtain for the same set of biological entities information from multiple sources. Examples include expression data for the same set of orthologous genes screened in different organisms and data on the same set of culture samples obtained with different high-throughput techniques. A major challenge is to find the important biological processes underlying the data and to disentangle therein processes common to all data sources and processes distinctive for a specific source. Recently, two promising simultaneous data integration methods have been proposed to attain this goal, namely generalized singular value decomposition (GSVD) and simultaneous component analysis with rotation to common and distinctive components (DISCO-SCA). RESULTS: Both theoretical analyses and applications to biologically relevant data show that: (1) straightforward applications of GSVD yield unsatisfactory results, (2) DISCO-SCA performs well, (3) provided proper pre-processing and algorithmic adaptations, GSVD reaches a performance level similar to that of DISCO-SCA, and (4) DISCO-SCA is directly generalizable to more than two data sources. The biological relevance of DISCO-SCA is illustrated with two applications. First, in a setting of comparative genomics, it is shown that DISCO-SCA recovers a common theme of cell cycle progression and a yeast-specific response to pheromones. The biological annotation was obtained by applying Gene Set Enrichment Analysis in an appropriate way. Second, in an application of DISCO-SCA to metabolomics data for Escherichia coli obtained with two different chemical analysis platforms, it is illustrated that the metabolites involved in some of the biological processes underlying the data are detected by one of the two platforms only; therefore, platforms for microbial metabolomics should be tailored to the biological question. CONCLUSIONS: Both DISCO-SCA and properly applied GSVD are promising integrative methods for finding common and distinctive processes in multisource data. Open source code for both methods is provided"
Keywords:Computational Biology/*methods Escherichia coli/metabolism Gene Expression Profiling Genomics Metabolomics Saccharomyces cerevisiae/genetics Statistics as Topic/*methods;
Notes:"MedlineVan Deun, Katrijn Van Mechelen, Iven Thorrez, Lieven Schouteden, Martijn De Moor, Bart van der Werf, Mariet J De Lathauwer, Lieven Smilde, Age K Kiers, Henk A L eng Research Support, Non-U.S. Gov't 2012/06/14 PLoS One. 2012; 7(5):e37840. doi: 10.1371/journal.pone.0037840. Epub 2012 May 31"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024