Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAspergillus SteA (sterile12-like) is a homeodomain-C2/H2-Zn+2 finger transcription factor required for sexual reproduction    Next AbstractChemical and sensory analysis of commercial tomato juices present on the Italian and Spanish markets »

J Vis Exp


Title:Fruit volatile analysis using an electronic nose
Author(s):Vallone S; Lloyd NW; Ebeler SE; Zakharov F;
Address:"Department of Plant Sciences, University of California, Davis, USA. svallone@ucdavis.edu"
Journal Title:J Vis Exp
Year:2012
Volume:20120330
Issue:61
Page Number: -
DOI: 10.3791/3821
ISSN/ISBN:1940-087X (Electronic) 1940-087X (Linking)
Abstract:"Numerous and diverse physiological changes occur during fruit ripening, including the development of a specific volatile blend that characterizes fruit aroma. Maturity at harvest is one of the key factors influencing the flavor quality of fruits and vegetables. The validation of robust methods that rapidly assess fruit maturity and aroma quality would allow improved management of advanced breeding programs, production practices and postharvest handling. Over the last three decades, much research has been conducted to develop so-called electronic noses, which are devices able to rapidly detect odors and flavors. Currently there are several commercially available electronic noses able to perform volatile analysis, based on different technologies. The electronic nose used in our work (zNose, EST, Newbury Park, CA, USA), consists of ultra-fast gas chromatography coupled with a surface acoustic wave sensor (UFGC-SAW). This technology has already been tested for its ability to monitor quality of various commodities, including detection of deterioration in apple; ripeness and rot evaluation in mango; aroma profiling of thymus species; C(6) volatile compounds in grape berries; characterization of vegetable oil and detection of adulterants in virgin coconut oil. This system can perform the three major steps of aroma analysis: headspace sampling, separation of volatile compounds, and detection. In about one minute, the output, a chromatogram, is produced and, after a purging cycle, the instrument is ready for further analysis. The results obtained with the zNose can be compared to those of other gas-chromatographic systems by calculation of Kovats Indices (KI). Once the instrument has been tuned with an alkane standard solution, the retention times are automatically converted into KIs. However, slight changes in temperature and flow rate are expected to occur over time, causing retention times to drift. Also, depending on the polarity of the column stationary phase, the reproducibility of KI calculations can vary by several index units. A series of programs and graphical interfaces were therefore developed to compare calculated KIs among samples in a semi-automated fashion. These programs reduce the time required for chromatogram analysis of large data sets and minimize the potential for misinterpretation of the data when chromatograms are not perfectly aligned. We present a method for rapid volatile compound analysis in fruit. Sample preparation, data acquisition and handling procedures are also discussed"
Keywords:"Chromatography, Gas/methods Fruit/*chemistry Volatile Organic Compounds/*analysis Volatilization;"
Notes:"MedlineVallone, Simona Lloyd, Nathan W Ebeler, Susan E Zakharov, Florence eng Research Support, U.S. Gov't, Non-P.H.S. Video-Audio Media 2012/04/12 J Vis Exp. 2012 Mar 30; (61):3821. doi: 10.3791/3821"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024