Title: | Elevated Carbon Dioxide Concentration Reduces Alarm Signaling in Aphids |
Author(s): | Boullis A; Fassotte B; Sarles L; Lognay G; Heuskin S; Vanderplanck M; Bartram S; Haubruge E; Francis F; Verheggen FJ; |
Address: | "Functional and Evolutionary Entomology, Gembloux Agro-bio Tech, University of Liege (ULg), Passage des Deportes, 2, Gembloux, Belgium. Analytical Chemistry, Gembloux Agro-bio Tech, University of Liege (ULg), Passage des Deportes, 2, Gembloux, Belgium. Research Institute for Biosciences, University of Mons (UMONS), Place du Parc, 23, Mons, Belgium. Max Planck Institute for Chemical Ecology, Ammerbach, Hans-Knoll-Strasse 8, Jena, Germany. Functional and Evolutionary Entomology, Gembloux Agro-bio Tech, University of Liege (ULg), Passage des Deportes, 2, Gembloux, Belgium. fverheggen@ulg.ac.be" |
DOI: | 10.1007/s10886-017-0818-z |
ISSN/ISBN: | 1573-1561 (Electronic) 0098-0331 (Linking) |
Abstract: | "Insects often rely on olfaction to communicate with conspecifics. While the chemical language of insects has been deciphered in recent decades, few studies have assessed how changes in atmospheric greenhouse gas concentrations might impact pheromonal communication in insects. Here, we hypothesize that changes in the concentration of atmospheric carbon dioxide affect the whole dynamics of alarm signaling in aphids, including: (1) the production of the active compound (E)-beta-farnesene (Ebetaf), (2) emission behavior when under attack, (3) perception by the olfactory apparatus, and (4) the escape response. We reared two strains of the pea aphid, Acyrthosiphon pisum, under ambient and elevated CO(2) concentrations over several generations. We found that an increase in CO(2) concentration reduced the production (i.e., individual content) and emission (released under predation events) of Ebetaf. While no difference in Ebetaf neuronal perception was observed, we found that an increase in CO(2) strongly reduced the escape behavior expressed by an aphid colony following exposure to natural doses of alarm pheromone. In conclusion, our results confirm that changes to greenhouse gases impact chemical communication in the pea aphid, and could potentially have a cascade effect on interactions with higher trophic levels" |
Keywords: | "Air Pollutants/*analysis/toxicity *Animal Communication Animals Aphids/*physiology Carbon Dioxide/*analysis/toxicity Coleoptera/physiology Dose-Response Relationship, Drug Escape Reaction/*drug effects/physiology Pheromones/analysis/*metabolism Predatory;" |
Notes: | "MedlineBoullis, Antoine Fassotte, Berenice Sarles, Landry Lognay, Georges Heuskin, Stephanie Vanderplanck, Maryse Bartram, Stefan Haubruge, Eric Francis, Frederic Verheggen, Francois J eng 2017/01/18 J Chem Ecol. 2017 Feb; 43(2):164-171. doi: 10.1007/s10886-017-0818-z. Epub 2017 Jan 17" |