Title: | How integration of global omics-data could help preparing for pandemics - a scent of influenza |
Author(s): | Bos LD; de Jong MD; Sterk PJ; Schultz MJ; |
Address: | "Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands. Department of Medical Microbiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands. Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands. Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands" |
ISSN/ISBN: | 1664-8021 (Print) 1664-8021 (Electronic) 1664-8021 (Linking) |
Abstract: | "Pandemics caused by novel emerging or re-emerging infectious diseases could lead to high mortality and morbidity world-wide when left uncontrolled. In this perspective, we evaluate the possibility of integration of global omics-data in order to timely prepare for pandemics. Such an approach requires two major innovations. First, data that is obtained should be shared with the global community instantly. The strength of rapid integration of simple signals is exemplified by Google's(TM) Flu Trend, which could predict the incidence of influenza-like illness based on online search engine queries. Second, omics technologies need to be fast and high-throughput. We postulate that analysis of the exhaled breath would be a simple, rapid and non-invasive alternative. Breath contains hundreds of volatile organic compounds that are altered by infection and inflammation. The molecular fingerprint of breath (breathprint) can be obtained using an electronic nose, which relies on sensor technology. These breathprints can be stored in an online database (a 'breathcloud') and coupled to clinical data. Comparison of the breathprint of a suspected subject to the breathcloud allows for a rapid decision on the presence or absence of a pathogen" |
Keywords: | diagnosis exhaled breath metabolite profiling metabolomics pandemic systems biology; |
Notes: | "PubMed-not-MEDLINEBos, Lieuwe D J de Jong, Menno D Sterk, Peter J Schultz, Marcus J eng Switzerland 2014/05/06 Front Genet. 2014 Apr 22; 5:80. doi: 10.3389/fgene.2014.00080. eCollection 2014" |