Title: | Aroma binding and stability in brewed coffee: A case study of 2-furfurylthiol |
Author(s): | Sun Z; Yang N; Liu C; Linforth RST; Zhang X; Fisk ID; |
Address: | "State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China; Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom. Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom. State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China. Electronic address: xmzhang@jiangnan.edu.cn. Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom. Electronic address: Ian.Fisk@nottingham.ac.uk" |
DOI: | 10.1016/j.foodchem.2019.05.175 |
ISSN/ISBN: | 1873-7072 (Electronic) 0308-8146 (Linking) |
Abstract: | "The aroma stability of fresh coffee brew was investigated during storage over 60?ª+min, there was a substantial reduction in available 2-furfurylthiol (2-FFT) (84%), methanethiol (72%), 3-methyl-1H-pyrole (68%) and an increase of 2-pentylfuran (65%). It is proposed that 2-FFT was reduced through reversible chemical binding and irreversible losses. Bound 2-FFT was released after cysteine addition, thereby demonstrating that a reversible binding reaction was the dominant mechanism of 2-FFT loss in natural coffee brew. The reduction in available 2-FFT was investigated at different pH and temperatures. At high pH, the reversible binding of 2-FFT was shown to protect 2-FFT from irreversible losses, while irreversible losses led to the reduction of total 2-FFT at low pH. A model reaction system was developed and a potential conjugate, hydroxyhydroquinone, was reacted with 2-FFT. Hydroxyhydroquinone also showed 2-FFT was released after cysteine addition at high pH" |
Keywords: | Coffee/*chemistry Food Storage/*methods Furans/analysis/*chemistry Hydrogen-Ion Concentration Odorants/*analysis Sulfhydryl Compounds/analysis/*chemistry Volatile Organic Compounds/analysis/chemistry 2-Furfurylthiol (2-FFT) 2-Furfurylthiol (PubChem CID 73; |
Notes: | "MedlineSun, Zhenchun Yang, Ni Liu, Chujiao Linforth, Robert S T Zhang, Xiaoming Fisk, Ian D eng England 2019/06/09 Food Chem. 2019 Oct 15; 295:449-455. doi: 10.1016/j.foodchem.2019.05.175. Epub 2019 May 25" |