Title: | Biotemplate Fabrication of Hollow Tubular Ce(x)Sr(1-x)TiO(3) with Regulable Surface Acidity and Oxygen Mobility for Efficient Destruction of Chlorobenzene: Intrinsic Synergy Effect and Reaction Mechanism |
Author(s): | Sun Y; Xu S; Bai B; Li L; Kang Y; Hu X; Liao Z; He C; |
Address: | "Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710064, P. R. China. State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China. Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China. National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "Developing economic and applicable catalysts with elegant chlorine resistance and organic byproduct inhibition capability is of great significance for chlorinated volatile organic compounds (Cl-VOCs) eco-friendly purification. Here, ternary Ce(x)Sr(1-x)TiO(3) catalysts with tunable surface acidity and oxygen species mobility were creatively fabricated using the hollow tubular-structured fruit hair of Platanus (FHP; a widespread greenery waste) as the scaffolding biotemplate. It is shown that the oxygen vacancy (O(v)) triggered by the presence of Ce can optimize the synergy between the Lewis acid sites (LAS) and Bronsted acid sites (BAS). High concentration of O(v) and BAS promotes the C-Cl cleavage of chlorobenzene (CB) and accelerates the desorption of Cl(*) radicals as inorganic chlorine. Simultaneously, the strong electron transfer within Ti-Ce-Sr linkage increases the acidity of LAS, resulting in the superior reducibility of Ce(0.4)Sr(0.6)TiO(3) and facilitating the deep oxidation of dechlorination intermediates. Additionally, the spatial confinement of the tubular structure remarkably accelerates the CB flow rate and reduces the residence time of byproducts over the prepared catalysts. Owing to these, CB can be efficiently destructed over Ce(0.4)Sr(0.6)TiO(3) with selectivity of CO(2) and inorganic chlorine dramatically enhanced, respectively, approximately 16 and 21 times at 275 degrees C compared to those of pure SrTiO(3). The present work provides a feasible and promising strategy for engineering efficient catalysts for heterogeneous thermocatalytic reactions for industrial-scale Cl-CVOC destruction" |
Keywords: | Catalysis Chlorides *Chlorine Chlorobenzenes/chemistry Oxidation-Reduction *Oxygen biotemplate byproduct inhibition catalytic destruction chlorobenzene hollow tubular CexSr1-xTiO3 synergy mechanism; |
Notes: | "MedlineSun, Yukun Xu, Shuai Bai, Bo Li, Lu Kang, Yu Hu, Xingquan Liao, Zehuihuang He, Chi eng Research Support, Non-U.S. Gov't 2022/03/25 Environ Sci Technol. 2022 May 3; 56(9):5796-5807. doi: 10.1021/acs.est.2c00270. Epub 2022 Mar 23" |