Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEditorial: volatile organic compounds in breath for monitoring IBD-longitudinal studies are essential. Authors' reply    Next AbstractMass spectrometry in art conservation-With focus on paintings »

Sci Rep


Title:Comparing patterns of volatile organic compounds exhaled in breath after consumption of two infant formulae with a different lipid structure: a randomized trial
Author(s):Smolinska A; Baranska A; Dallinga JW; Mensink RP; Baumgartner S; van de Heijning BJM; van Schooten FJ;
Address:"NUTRIM School of Nutrition and Translational Research in Metabolism, Department Pharmacology & Toxicology, Maastricht University, Maastricht, The Netherlands. A.Smolinska@maastrichtuniversity.nl. NUTRIM School of Nutrition and Translational Research in Metabolism, Department Pharmacology & Toxicology, Maastricht University, Maastricht, The Netherlands. NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, The Netherlands. Nutricia Research, Utrecht, The Netherlands"
Journal Title:Sci Rep
Year:2019
Volume:20190124
Issue:1
Page Number:554 -
DOI: 10.1038/s41598-018-37210-5
ISSN/ISBN:2045-2322 (Electronic) 2045-2322 (Linking)
Abstract:"Infant formulae have been used since decades as an alternative to or a complement to human milk. Human milk, the 'gold standard' of infant nutrition, has been studied for its properties in order to create infant formulae that bring similar benefits to the infant. One of the characteristics of milk is the size of the lipid droplets which is known to affect the digestion, gastric emptying and triglyceride metabolism. In the current study a concept infant milk formula with large, phospholipid coating of lipid droplets (mode diameter 3-5 mum; NUTURIS, further described as 'active'), was compared to a commercially available formula milk characterised by smaller lipid droplets, further described as 'control' (both products derived from Nutricia). We investigated whether we could find an effect of lipid droplet size on volatile compounds in exhaled air upon ingestion of either product. For that purpose, exhaled breath was collected from a group of 29 healthy, non-smoking adult males before ingestion of a study product (baseline measurements, T0) and at the following time points after the test meal: 30, 60, 120, 180 and 240 min. Volatile organic compounds (VOCs) in breath were detected by gas chromatography-time-of-flight-mass spectrometry. Any differences in the time course of VOCs patterns upon intake of active and control products were investigated by regularised multivariate analysis of variance (rMANOVA). The rMANOVA analysis revealed statistically significant differences in the exhaled breath composition 240 min after ingestion of the active formula compared to control product (p-value < 0.0001), but did not show significant changes between active and control product at any earlier time points. A set of eight VOCs in exhaled breath had the highest contribution to the difference found at 240 minutes between the two formulas. A set of ten VOCs was different between baseline and the two formulae at T240 with p-value < 0.0001. To our knowledge this is the first study that shows the ability of VOCs in exhaled breath to monitor metabolic effects after ingestion of infant formulae with different lipid structure. The statistically significant differences in compound abundance found between active and control formula milk may be related to: (i) specific differences in the digestion, (ii) absorption of lipids and proteins and (iii) assimilation of the products in the gut"
Keywords:Adolescent Adult Breath Tests/methods Cross-Over Studies Digestion/physiology Double-Blind Method Eating/*physiology Exhalation/*physiology Gas Chromatography-Mass Spectrometry Gastrointestinal Absorption/physiology Healthy Volunteers Humans Infant Formul;
Notes:"MedlineSmolinska, A Baranska, A Dallinga, J W Mensink, R P Baumgartner, S van de Heijning, B J M van Schooten, F J eng Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov't England 2019/01/27 Sci Rep. 2019 Jan 24; 9(1):554. doi: 10.1038/s41598-018-37210-5"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-12-2024