Title: | Intraspecies Volatile Interactions Affect Growth Rates and Exometabolomes in Aspergillus oryzae KCCM 60345 |
Address: | "Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea" |
ISSN/ISBN: | 1738-8872 (Electronic) 1017-7825 (Linking) |
Abstract: | "Volatile organic compounds (VOCs) are increasingly been recognized as the chemical mediators of mold interactions, shaping their community dynamics, growth, and metabolism. Herein, we selectively examined the time-correlated (0 D-11 D, where D = incubation days) effects of intraspecies VOC-mediated interactions (VMI) on Aspergillus oryzae KCCM 60345 (S1), following co-cultivation with partner strain A. oryzae KACC 44967 (S2), in a specially designed twin plate assembly. The comparative evaluation of S1(VMI) (S1 subjected to VMI with S2) and its control (S1(Con)) showed a notable disparity in their radial growth (S1(VMI) < S1(Con)) at 5 D, protease activity (S1(VMI) > S1(Con)) at 3-5 D, amylase activity (S1(VMI) < S1(Con)) at 3-5 D, and antioxidant levels (S1(VMI) > S1(Con)) at 3 D. Furthermore, we observed a distinct clustering pattern for gas chromatography-time of flight-mass spectrometry datasets from 5 D extracts of S1(VMI) and S1(Con) in principle component analysis (PC1: 30.85%; PC2: 10.31%) and partial least squares discriminant analysis (PLS-DA) (PLS1: 30.77; PLS2: 10.15%). Overall, 43 significantly discriminant metabolites were determined for engendering the metabolic variance based on the PLS-DA model (VIP > 0.7, p < 0.05). In general, a marked disparity in the relative abundance of amino acids (S1(VMI) > S1(Con)) at 5 D, organic acids (S1(VMI) > S1(Con)) at 5 D, and kojic acid (S1(VMI) < S1(Con)) at 5-7 D were observed. Examining the headspace VOCs shared between S1 and S2 in the twin plate for 5 D incubated samples, we observed the relatively higher abundance of C-8 VOCs (1-octen-3-ol, (5Z)-octa-1,5-dien-3-ol, 3-octanone, 1-octen-3-ol acetate) having known semiochemical functions. The present study potentially illuminates the effects of VMI on commercially important A. oryzae's growth and biochemical phenotypes with subtle details of altered metabolomes" |
Keywords: | Amino Acids/metabolism Amylases/metabolism Aspergillus oryzae/*growth & development/*metabolism Coculture Techniques Culture Media/chemistry Gas Chromatography-Mass Spectrometry *Metabolome Organic Chemicals/analysis/metabolism Peptide Hydrolases/metaboli; |
Notes: | "MedlineSingh, Digar Lee, Choong Hwan eng Korea (South) 2017/11/16 J Microbiol Biotechnol. 2018 Feb 28; 28(2):199-209. doi: 10.4014/jmb.1711.11005" |