Title: | Molecular characterization and kinetics of isoprene degrading bacteria |
Author(s): | Singh A; Srivastava N; Dubey SK; |
Address: | "Molecular Ecology Laboratory, Department of Botany, Banaras Hindu University, Varanasi 221005, India. Molecular Ecology Laboratory, Department of Botany, Banaras Hindu University, Varanasi 221005, India. Electronic address: skdubey@bhu.ac.in" |
DOI: | 10.1016/j.biortech.2019.01.057 |
ISSN/ISBN: | 1873-2976 (Electronic) 0960-8524 (Linking) |
Abstract: | "Isoprene, the highly reactive volatile organic compound, is used as monomer for the synthesis of several useful polymers. Its extensive production and usage leads to contamination of air. Once released, it alters the atmospheric chemistry by reacting with hydroxyl radicals (OH) and nitrogen oxides (NO(x)) to generate tropospheric ozone. Its prolonged exposure causes deleterious effects in human and plants. Therefore, its removal from the contaminated environment through biodegradation, provides a promising remedial solution. In the present study, isoprene utilizing bacteria namely, Pseudomonas sp., Arthrobacter sp., Bacillus sp. Sphingobacterium sp., Sphingobium sp., and Pantoea sp. were isolated and characterized from leaf surface of Madhuca latifolia and Tectona grandis, and also from soils under these plants. Their isoprene degrading capability and kinetics were assessed in batch mode. The isoprene degradation study indicated Pseudomonas sp. to be the most efficient isoprene degrader" |
Keywords: | "Arthrobacter/*metabolism Biodegradation, Environmental Butadienes/*metabolism Hemiterpenes/*metabolism Kinetics Nitrogen Oxides/metabolism Ozone/metabolism Pseudomonas/*metabolism Soil Bacteria Batch culture Biodegradation Isoprene;" |
Notes: | "MedlineSingh, Abhishek Srivastava, Navnita Dubey, Suresh Kumar eng England 2019/01/25 Bioresour Technol. 2019 Apr; 278:51-56. doi: 10.1016/j.biortech.2019.01.057. Epub 2019 Jan 15" |