|
J Geophys Res
Title: | Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model |
|
Author(s): | Boeke NL; Marshall JD; Alvarez S; Chance KV; Fried A; Kurosu TP; Rappengluck B; Richter D; Walega J; Weibring P; Millet DB; |
|
Address: | "Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, USA. Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, USA. Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA. Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA. Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA" |
|
Journal Title: | J Geophys Res |
Year: | 2011 |
Volume: | 20110310 |
Issue: | D5 |
Page Number: | - |
DOI: | 10.1029/2010jd014870 |
|
ISSN/ISBN: | 0148-0227 (Print) 2156-2202 (Electronic) 0148-0227 (Linking) |
|
Abstract: | "[1] We combine aircraft measurements (Second Texas Air Quality Study, Megacity Initiative: Local and Global Research Observations, Intercontinental Chemical Transport Experiment: Phase B) over the United States, Mexico, and the Pacific with a 3-D model (GEOS-Chem) to evaluate formaldehyde column (Omega(HCHO)) retrievals from the Ozone Monitoring Instrument (OMI) and assess the information they provide on HCHO across local to regional scales and urban to background regimes. OMI Omega(HCHO) correlates well with columns derived from aircraft measurements and GEOS-Chem (R = 0.80). For the full data ensemble, OMI's mean bias is -3% relative to aircraft-derived Omega(HCHO) (-17% where Omega(HCHO) > 5 x 10(15) molecules cm(-2)) and -8% relative to GEOS-Chem, within expected uncertainty for the retrieval. Some negative bias is expected for the satellite and model, given the plume sampling of many flights and averaging over the satellite and model footprints. Major axis regression for OMI versus aircraft and model columns yields slopes (95% confidence intervals) of 0.80 (0.62-1.03) and 0.98 (0.73-1.35), respectively, with no significant intercept. Aircraft measurements indicate that the normalized vertical HCHO distribution, required by the satellite retrieval, is well captured by GEOS-Chem, except near Mexico City. Using measured HCHO profiles in the retrieval algorithm does not improve satellite-aircraft agreement, suggesting that use of a global model to specify shape factors does not substantially degrade retrievals over polluted areas. While the OMI measurements show that biogenic volatile organic compounds dominate intra-annual and regional Omega(HCHO) variability across the United States, smaller anthropogenic Omega(HCHO) gradients are detectable at finer spatial scales ( approximately 20-200 km) near many urban areas" |
|
Keywords: | |
|
Notes: | "PubMed-not-MEDLINEBoeke, Nicholas L Marshall, Julian D Alvarez, Sergio Chance, Kelly V Fried, Alan Kurosu, Thomas P Rappengluck, Bernhard Richter, Dirk Walega, James Weibring, Petter Millet, Dylan B eng NNX10AG65G/NASA/NASA/ 2011/03/16 J Geophys Res. 2011 Mar 16; 116(D5):10.1029/2010jd014870. doi: 10.1029/2010jd014870. Epub 2011 Mar 10" |
|
|
|
|
|
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 24-11-2024
|