Title: | Characterization of polar organosulfates in secondary organic aerosol from the green leaf volatile 3-Z-hexenal |
Author(s): | Shalamzari MS; Kahnt A; Vermeylen R; Kleindienst TE; Lewandowski M; Cuyckens F; Maenhaut W; Claeys M; |
Address: | "Department of Pharmaceutical Sciences, University of Antwerp , BE-2610 Antwerp, Belgium" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "Evidence is provided that the green leaf volatile 3-Z-hexenal serves as a precursor for biogenic secondary organic aerosol through the formation of polar organosulfates (OSs) with molecular weight (MW) 226. The MW 226 C6-OSs were chemically elucidated, along with structurally similar MW 212 C5-OSs, whose biogenic precursor is likely related to 3-Z-hexenal but still remains unknown. The MW 226 and 212 OSs have a substantial abundance in ambient fine aerosol from K-puszta, Hungary, which is comparable to that of the isoprene-related MW 216 OSs, known to be formed through sulfation of C5-epoxydiols, second-generation gas-phase photooxidation products of isoprene. Using detailed interpretation of negative-ion electrospray ionization mass spectral data, the MW 226 compounds are assigned to isomeric sulfate esters of 3,4-dihydroxyhex-5-enoic acid with the sulfate group located at the C-3 or C-4 position. Two MW 212 compounds present in ambient fine aerosol are attributed to isomeric sulfate esters of 2,3-dihydroxypent-4-enoic acid, of which two are sulfated at C-3 and one is sulfated at C-2. The formation of the MW 226 OSs is tentatively explained through photooxidation of 3-Z-hexenal in the gas phase, resulting in an alkoxy radical, followed by a rearrangement and subsequent sulfation of the epoxy group in the particle phase" |
Keywords: | "Aerosols/*chemistry Atmosphere/chemistry Chromatography, Liquid Hexobarbital/*analysis/chemistry Hungary Mass Spectrometry Molecular Weight Plant Leaves/*chemistry Sulfates/*chemistry Volatile Organic Compounds/*analysis;" |
Notes: | "MedlineShalamzari, Mohammad Safi Kahnt, Ariane Vermeylen, Reinhilde Kleindienst, Tadeusz E Lewandowski, Michael Cuyckens, Filip Maenhaut, Willy Claeys, Magda eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2014/10/02 Environ Sci Technol. 2014 Nov 4; 48(21):12671-8. doi: 10.1021/es503226b. Epub 2014 Oct 17" |