Title: | Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory |
Author(s): | Scholz SS; Vadassery J; Heyer M; Reichelt M; Bender KW; Snedden WA; Boland W; Mithofer A; |
Address: | "Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knoll-Strasse 8, 07745 Jena, Germany. Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoll-Strasse 8, 07745 Jena, Germany. Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA. Department of Biology, Queen's University, Kingston, Ontario, Canada, Canada, K7L 3N6. Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knoll-Strasse 8, 07745 Jena, Germany amithoefer@ice.mpg.de" |
ISSN/ISBN: | 1752-9867 (Electronic) 1674-2052 (Linking) |
Abstract: | "Throughout their life, plants are challenged by various abiotic and biotic stress factors. Among those are attacks from herbivorous insects. The molecular mechanisms underlying the detection of herbivores and the subsequent signal transduction are not well understood. As a second messenger, fluxes in intracellular Ca(2+) levels play a key role in mediating stress response pathways. Ca(2+) signals are decoded by Ca(2+) sensor proteins such as calmodulin-like proteins (CMLs). Here, we demonstrate that recombinant CML37 behaves like a Ca(2+) sensor in vitro and, in Arabidopsis, AtCML37 is induced by mechanical wounding as well as by infestation with larvae of the generalist lepidopteran herbivore Spodoptera littoralis. Loss of function of CML37 led to a better feeding performance of larvae suggesting that CML37 is a positive defense regulator. No herbivory-induced changes in secondary metabolites such as glucosinolates or flavonoids were detected in cml37 plants, although a significant reduction in the accumulation of jasmonates was observed, due to reduced expression of JAR1 mRNA and cellular enzyme activity. Consequently, the expression of jasmonate-responsive genes was reduced as well. Summarizing, our results suggest that the Ca(2+) sensor protein, CML37, functions as a positive regulator in Ca(2+) signaling during herbivory, connecting Ca(2+) and jasmonate signaling" |
Keywords: | "Animals Arabidopsis/genetics/*physiology Arabidopsis Proteins/*genetics *Calcium Signaling Calmodulin/*genetics Cyclopentanes/*chemistry Gene Expression Regulation, Plant *Herbivory Mutation Oxylipins/*chemistry Spodoptera calmodulin-like proteins.cytoso;" |
Notes: | "MedlineScholz, Sandra S Vadassery, Jyothilakshmi Heyer, Monika Reichelt, Michael Bender, Kyle W Snedden, Wayne A Boland, Wilhelm Mithofer, Axel eng Research Support, Non-U.S. Gov't England 2014/10/01 Mol Plant. 2014 Dec; 7(12):1712-26. doi: 10.1093/mp/ssu102. Epub 2014 Sep 29" |