Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractFactors that influence the volatile organic compound content in human breath    Next AbstractEffects of sunflower soap stocks on light lamb meat quality »

Ecol Evol


Title:Interbreeding between local and translocated populations of a cleaner fish in an experimental mesocosm predicts risk of disrupted local adaptation
Author(s):Blanco Gonzalez E; Espeland SH; Jentoft S; Hansen MM; Robalo JI; Stenseth NC; Jorde PE;
Address:"Department of Natural Sciences University of Agder Kristiansand Norway. Centre for Coastal Research University of Agder Kristiansand Norway. Norwegian College of Fishery Science UiT The Arctic University of Norway Tromso Norway. Institute of Marine Research Flodevigen Norway. Centre for Ecological and Evolutionary Synthesis, Department of Biosciences University of Oslo Oslo Norway. Department of Bioscience Aarhus University Aarhus C Denmark. MARE - Marine and Environmental Sciences Centre ISPA Instituto Universitario de Ciencias Psicologicas, Sociais e da Vida Lisboa Portugal"
Journal Title:Ecol Evol
Year:2019
Volume:20190509
Issue:11
Page Number:6665 - 6677
DOI: 10.1002/ece3.5246
ISSN/ISBN:2045-7758 (Print) 2045-7758 (Electronic) 2045-7758 (Linking)
Abstract:"Translocation of organisms within or outside its native range carries the risk of modifying the community of the recipient ecosystems and induces gene flow between locally adapted populations or closely related species. In this study, we evaluated the genetic consequences of large-scale translocation of cleaner wrasses that has become a common practice within the salmon aquaculture industry in northern Europe to combat sea lice infestation. A major concern with this practice is the potential for hybridization of escaped organisms with the local, recipient wrasse population, and thus potentially introduce exogenous alleles and breaking down coadapted gene complexes in local populations. We investigated the potential threat for such genetic introgressions in a large seminatural mesocosm basin. The experimental setting represented a simulated translocation of corkwing wrasse (Symphodus melops) that occurs on a large scale in the Norwegian salmon industry. Parentage assignment analysis of mesocosm's offspring revealed 30% (195 out of 651 offspring) interbreeding between the two populations, despite their being genetically (F (ST) = 0.094, p < 0.05) and phenotypically differentiated. Moreover, our results suggest that reproductive fitness of the translocated western population doubled that of the local southern population. Our results confirm that human translocations may overcome the impediments imposed by natural habitat discontinuities and urge for immediate action to manage the genetic resources of these small benthic wrasses"
Keywords:Symphodus melops corkwing wrasse mating behavior microsatellites parentage assignment reproductive fitness;
Notes:"PubMed-not-MEDLINEBlanco Gonzalez, Enrique Espeland, Sigurd H Jentoft, Sissel Hansen, Michael M Robalo, Joana I Stenseth, Nils C Jorde, Per Erik eng England 2019/06/27 Ecol Evol. 2019 May 9; 9(11):6665-6677. doi: 10.1002/ece3.5246. eCollection 2019 Jun"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 28-12-2024