Title: | Biodegradation of methane and halocarbons in simulated landfill biocover systems containing compost materials |
Author(s): | Scheutz C; Pedersen GB; Costa G; Kjeldsen P; |
Address: | "Dep. of Environmental Engineering, Technical Univ. of Denmark, Miljovej, Building 113, DK-2800 Kgs. Lyngby, Denmark. chs@env.dtu.dk" |
ISSN/ISBN: | 0047-2425 (Print) 0047-2425 (Linking) |
Abstract: | "The attenuation potential of methane (CH(4)) and of selected volatile organic compounds (VOCs) was compared in four types of compost materials using dynamic flow column experiments over a period of 255 d. Garden waste compost mixed with wood chips showed the highest steady-state CH(4) oxidation rate (161 g m(-2) d(-1)), followed by a commercial compost product Supermuld (110 g m(-2) d(-1)). In the column containing the highest fraction of compost (compost/sand mixed in 1:1), CH(4) oxidation declined significantly during the period of operation, probably due to clogging by formation of exopolymeric substances. After 40 d of operation, CH(4) production was observed. All the VOCs tested were degraded. CFC-11 (CCl(3)F) and HCFC-21 (CCl(2)FH) were anaerobically degraded by reductive dechlorination, generating HCFC-31 (CClFH(2)) and HFC-41 (CFH(3)), which were both aerobically degraded in the oxic portion of the columns. Overall, the highest removal of VOCs was observed in the column containing the compost/wood chip mixture. This study demonstrates that biocovers consisting of compost materials have the potential to attenuate trace gas emissions from landfills" |
Keywords: | Carbon/*metabolism Halogens/*metabolism Methane/*metabolism Oxidation-Reduction *Refuse Disposal *Soil; |
Notes: | "MedlineScheutz, Charlotte Pedersen, Gitte B Costa, Giulia Kjeldsen, Peter eng 2009/05/26 J Environ Qual. 2009 May 20; 38(4):1363-71. doi: 10.2134/jeq2008.0170. Print 2009 Jul-Aug" |