Title: | A corona discharge atmospheric pressure chemical ionization source with selective NO(+) formation and its application for monoaromatic VOC detection |
Address: | "Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynska dolina F2 842 48 Bratislava, Slovakia. matejcik@fmph.uniba.sk" |
ISSN/ISBN: | 1364-5528 (Electronic) 0003-2654 (Linking) |
Abstract: | "We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+).(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+).(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+).(H2O)n to H3O(+).(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+).(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+).(H2O)n chemical ionization" |
Notes: | "PubMed-not-MEDLINESabo, Martin Matejcik, Stefan eng England 2013/10/02 Analyst. 2013 Nov 21; 138(22):6907-12. doi: 10.1039/c3an00964e" |