Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEnvironmental health collaboration: United States and Russia    Next Abstract"Breakdown of species boundaries in Mandevilla: floral morphological intermediacy, novel fragrances and asymmetric pollen flow" »

J Anim Ecol


Title:Informed herbivore movement and interplant communication determine the effects of induced resistance in an individual-based model
Author(s):Rubin IN; Ellner SP; Kessler A; Morrell KA;
Address:"Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853-2701, USA"
Journal Title:J Anim Ecol
Year:2015
Volume:20150430
Issue:5
Page Number:1273 - 1285
DOI: 10.1111/1365-2656.12369
ISSN/ISBN:1365-2656 (Electronic) 0021-8790 (Linking)
Abstract:"1. Plant induced resistance to herbivory affects the spatial distribution of herbivores, as well as their performance. In recent years, theories regarding the benefit to plants of induced resistance have shifted from ideas of optimal resource allocation towards a more eclectic set of theories that consider spatial and temporal plant variability and the spatial distribution of herbivores among plants. However, consensus is lacking on whether induced resistance causes increased herbivore aggregation or increased evenness, as both trends have been experimentally documented. 2. We created a spatial individual-based model that can describe many plant-herbivore systems with induced resistance, in order to analyse how different aspects of induced resistance might affect herbivore distribution, and the total damage to a plant population, during a growing season. 3. We analyse the specific effects on herbivore aggregation of informed herbivore movement (preferential movement to less-damaged plants) and of information transfer between plants about herbivore attacks, in order to identify mechanisms driving both aggregation and evenness. We also investigate how the resulting herbivore distributions affect the total damage to plants and aggregation of damage. 4. Even, random and aggregated herbivore distributions can all occur in our model with induced resistance. Highest levels of aggregation occurred in the models with informed herbivore movement, and the most even distributions occurred when the average number of herbivores per plant was low. With constitutive resistance, only random distributions occur. Damage to plants was spatially correlated, unless plants recover very quickly from damage; herbivore spatial autocorrelation was always weak. 5. Our model and results provide a simple explanation for the apparent conflict between experimental results, indicating that both increased aggregation and increased evenness of herbivores can result from induced resistance. We demonstrate that information transfer from plants to herbivores, and from plants to neighbouring plants, can both be major factors in determining non-random herbivore distributions"
Keywords:"*Animal Distribution Animals *Antibiosis Coleoptera/growth & development/*physiology *Herbivory Larva/growth & development/physiology Models, Biological Solidago/growth & development/*physiology herbivore distribution individual-based model induced resist;"
Notes:"MedlineRubin, Ilan N Ellner, Stephen P Kessler, Andre Morrell, Kimberly A eng Research Support, U.S. Gov't, Non-P.H.S. England 2015/03/27 J Anim Ecol. 2015 Sep; 84(5):1273-85. doi: 10.1111/1365-2656.12369. Epub 2015 Apr 30"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 24-11-2024