Title: | Cucurbitacin B Activates Bitter-Sensing Gustatory Receptor Neurons via Gustatory Receptor 33a in Drosophila melanogaster |
Author(s): | Rimal S; Sang J; Dhakal S; Lee Y; |
Address: | "Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Korea" |
DOI: | 10.14348/molcells.2020.0019 |
ISSN/ISBN: | 0219-1032 (Electronic) 1016-8478 (Print) 1016-8478 (Linking) |
Abstract: | "The Gustatory system enables animals to detect toxic bitter chemicals, which is critical for insects to survive food induced toxicity. Cucurbitacin is widely present in plants such as cucumber and gourds that acts as an anti-herbivore chemical and an insecticide. Cucurbitacin has a harmful effect on insect larvae as well. Although various beneficial effects of cucurbitacin such as alleviating hyperglycemia have also been documented, it is not clear what kinds of molecular sensors are required to detect cucurbitacin in nature. Cucurbitacin B, a major bitter component of bitter melon, was applied to induce action potentials from sensilla of a mouth part of the fly, labellum. Here we identify that only Gr33a is required for activating bitter-sensing gustatory receptor neurons by cucurbitacin B among available 26 Grs, 23 Irs, 11 Trp mutants, and 26 Gr-RNAi lines. We further investigated the difference between control and Gr33a mutant by analyzing binary food choice assay. We also measured toxic effect of Cucurbitacin B over 0.01 mM range. Our findings uncover the molecular sensor of cucurbitacin B in Drosophila melanogaster. We propose that the discarded shell of Cucurbitaceae can be developed to make a new insecticide" |
Keywords: | "Action Potentials/drug effects Animals Behavior, Animal Drosophila Proteins/*metabolism Drosophila melanogaster/drug effects/*metabolism Feeding Behavior Insecticides/toxicity Mutation/genetics Receptors, Cell Surface/*metabolism Sensory Receptor Cells/*m;" |
Notes: | "MedlineRimal, Suman Sang, Jiun Dhakal, Subash Lee, Youngseok eng Korea (South) 2020/05/27 Mol Cells. 2020 Jun 30; 43(6):530-538. doi: 10.14348/molcells.2020.0019" |