Title: | Effect of Must Hyperoxygenation on Sensory Expression and Chemical Composition of the Resulting Wines |
Author(s): | Rihak Z; Prusova B; Kumsta M; Baron M; |
Address: | "Department of Viticulture and Enology, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic" |
DOI: | 10.3390/molecules27010235 |
ISSN/ISBN: | 1420-3049 (Electronic) 1420-3049 (Linking) |
Abstract: | "This paper evaluates the effect of must hyperoxygenation on final wine. Lower concentrations of caftaric acid (0.29 mg.L(-1)), coutaric acid (1.37 mg.L(-1)) and Catechin (0.86 mg.L(-1)) were observed in hyperoxygenated must in contrast to control must (caftaric acid 32.78 mg.L(-1), coutaric acid 5.01 mg.L(-1) and Catechin 4.45 mg.L(-1)). In the final wine, hydroxybenzoic acids were found in higher concentrations in the control variant (gallic acid 2.58 mg.L(-1), protocatechuic acid 1.02 mg.L(-1), vanillic acid 2.05 mg.L(-1), syringic acid 2.10 mg.L(-1)) than in the hyperoxygenated variant (2.01 mg.L(-1), 0.86 mg.L(-1), 0.98 mg.L(-1) and 1.50 mg.L(-1) respectively). Higher concentrations of total flavanols (2 mg.L(-1) in hyperoxygenated must and 21 mg.L(-1) in control must; 7.5 mg.L(-1) in hyperoxygenated wine and 19.8 mg.L(-1) in control wine) and polyphenols (97 mg.L(-1) in hyperoxygenated must and 249 mg.L(-1) in control must; 171 mg.L(-1) in hyperoxygenated wine and 240 mg.L(-1) in control wine) were found in both the must and the control wine. A total of 24 volatiles were determined using gas chromatography mass spectrometry. Statistical differences were achieved for isobutyl alcohol (26.33 mg.L(-1) in control wine and 32.84 mg.L(-1) in hyperoxygenated wine), or 1-propanol (7.28 mg.L(-1) in control wine and 8.51 mg.L(-1) in hyperoxygenated wine), while esters such as isoamyl acetate (1534.41 microg.L(-1) in control wine and 698.67 microg.L(-1) in hyperoxygenated wine), 1-hexyl acetate (136.32 microg.L(-1) in control wine and 71.67 microg.L(-1) in hyperoxygenated wine) and isobutyl acetate (73.88 microg.L(-1) in control wine and 37.27 microg.L(-1) in hyperoxygenated wine) had a statistically lower concentration" |
Keywords: | Flavonoids/analysis/chemistry *Food Analysis/methods Hydroxybenzoates/analysis/chemistry *Oxidation-Reduction Polyphenols/analysis/chemistry *Taste Volatile Organic Compounds/analysis/chemistry Wine/*analysis hyperoxygenation polyphenolic compounds sensor; |
Notes: | "MedlineRihak, Zdenek Prusova, Bozena Kumsta, Michal Baron, Mojmir eng Switzerland 2022/01/12 Molecules. 2021 Dec 30; 27(1):235. doi: 10.3390/molecules27010235" |