Title: | Direct Transfer of Phthalate and Alternative Plasticizers from Indoor Source Products to Dust: Laboratory Measurements and Predictive Modeling |
Author(s): | Bi C; Wang X; Li H; Li X; Xu Y; |
Address: | "Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712-1139, United States of America. School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. Department of Building Science, Tsinghua University, Beijing 100084, China. Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "Phthalate and alternative plasticizers are semivolatile organic compounds (SVOCs) and among the most abundant indoor pollutants. Although ingestion of dust is one of the major exposure pathways to them, migration knowledge from source products to indoor dust is still limited. Systematic chamber measurements were conducted to investigate the direct transfer of these SVOCs between source products and dust in contact with the source. Substantial direct source-to-dust transfer of SVOCs was observed for all tests. The concentration of bis(2-ethylhexyl)phthalate in dust was 12 times higher than the pre-experimental level after only two days of source-dust contact. A mechanistic model was developed to predict the direct transfer process, and a reasonable agreement between model predictions and measurements was achieved. The octanol/air partition coefficient (K(oa)) of SVOCs, the emission parameter of the source product (y(0)), and the characteristics of the dust layer (i.e., porosity and thickness) control the transfer, affecting the SVOC concentration in dust, the kinetics of direct transfer, or both. Dust mass loading has a significant influence on the transfer, while relative humidity only has a limited effect. The findings suggest that minimizing the use of SVOC-containing products and house vacuuming are effective intervention strategies to reduce young children's exposure to SVOCs" |
Keywords: | "*Air Pollution, Indoor/analysis Child Child, Preschool Dust Humans Laboratories *Phthalic Acids/analysis Plasticizers *Volatile Organic Compounds/analysis;" |
Notes: | "MedlineBi, Chenyang Wang, Xinke Li, Hongwan Li, Xiaofeng Xu, Ying eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2020/12/09 Environ Sci Technol. 2021 Jan 5; 55(1):341-351. doi: 10.1021/acs.est.0c05131. Epub 2020 Dec 7" |