Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractComplex variation in habitat selection strategies among individuals driven by extrinsic factors    Next AbstractImpact of Air Pollution Generated by Brick Kilns on the Pulmonary Health of Workers »

Environ Pollut


Title:Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools
Author(s):Raysoni AU; Stock TH; Sarnat JA; Chavez MC; Sarnat SE; Montoya T; Holguin F; Li WW;
Address:"Department of Public Health Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA. Electronic address: amit.raysoni@gmail.com. Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX 77030, USA. Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA 30322, USA. Department of Civil Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA"
Journal Title:Environ Pollut
Year:2017
Volume:20170829
Issue:Pt 1
Page Number:681 - 693
DOI: 10.1016/j.envpol.2017.08.065
ISSN/ISBN:1873-6424 (Electronic) 0269-7491 (Linking)
Abstract:"A 14-week air quality study, characterizing the indoor and outdoor concentrations of 18 VOCs at four El Paso, Texas elementary schools, was conducted in Spring 2010. Three schools were in an area of high traffic density and the fourth school, considered as a background school, was situated in an area affected minimally by stationary and mobile sources of air pollution. Passive samplers were deployed for monitoring and analyzed by GC/MS. Differences in the concentration profiles of the BTEX species between the high and low traffic density schools confirmed the pre-defined exposure patterns. Toluene was the predominant compound within the BTEX group and the 96-hr average outdoor concentrations varied from 1.16 to 4.25 mug/m(3) across the four schools. Outdoor BTEX species were strongly correlated with each other (0.63 < r < 1.00, p < 0.05) suggesting a common source: vehicular traffic emissions. As expected, the strength of the associations between these compounds was more intense at each of the three high-exposure schools in contrast to the low-exposure school. This was further corroborated by the results obtained from the BTEX inter-species ratios (toluene: benzene and m, p- xylenes: ethylbenzene). Certain episodic events during the study period resulted in very elevated concentrations of some VOCs such as n-pentane. Indoor concentration of compounds with known indoor sources such as alpha -pinene, d-limonene, p-dichlorobenzene, and chloroform were generally higher than their corresponding outdoor concentrations. Cleaning agents, furniture polishes, materials used in arts and crafts activities, hot-water usage, and deodorizing cakes used in urinal pots were the likely major sources for these high indoor concentrations. Finally, retrospective assessment of average ambient BTEX concentrations over the last twenty years suggest a gradual decrement in this border region"
Keywords:"Air Pollutants/analysis Air Pollution/analysis/*statistics & numerical data Air Pollution, Indoor/analysis/statistics & numerical data Benzene/analysis Chlorobenzenes Cyclohexenes *Environmental Monitoring Limonene Pentanes Retrospective Studies Schools T;"
Notes:"MedlineRaysoni, Amit U Stock, Thomas H Sarnat, Jeremy A Chavez, Mayra C Sarnat, Stefanie Ebelt Montoya, Teresa Holguin, Fernando Li, Wen-Whai eng England 2017/08/30 Environ Pollut. 2017 Dec; 231(Pt 1):681-693. doi: 10.1016/j.envpol.2017.08.065. Epub 2017 Aug 29"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 18-11-2024