Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractLight absorption potential of water-soluble organic aerosols in the two polluted urban locations in the central Indo-Gangetic Plain    Next AbstractFlavour Volatiles of Fermented Vegetable and Fruit Substrates: A Review »

BMC Plant Biol


Title:Differential activation of sporamin expression in response to abiotic mechanical wounding and biotic herbivore attack in the sweet potato
Author(s):Rajendran S; Lin IW; Chen MJ; Chen CY; Yeh KW;
Address:"Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan. ykwbppp@ntu.edu.tw"
Journal Title:BMC Plant Biol
Year:2014
Volume:20140428
Issue:
Page Number:112 -
DOI: 10.1186/1471-2229-14-112
ISSN/ISBN:1471-2229 (Electronic) 1471-2229 (Linking)
Abstract:"BACKGROUND: Plants respond differently to mechanical wounding and herbivore attack, using distinct pathways for defense. The versatile sweet potato sporamin possesses multiple biological functions in response to stress. However, the regulation of sporamin gene expression that is activated upon mechanical damage or herbivore attack has not been well studied. RESULTS: Biochemical analysis revealed that different patterns of Reactive oxygen species (ROS) and antioxidant mechanism exist between mechanical wounding (MW) and herbivore attack (HA) in the sweet potato leaf. Using LC-ESI-MS (Liquid chromatography electrospray ionization mass spectrometry analysis), only the endogenous JA (jasmonic acid) level was found to increase dramatically after MW in a time-dependent manner, whereas both endogenous JA and SA (salicylic acid) increase in parallel after HA. Through yeast one-hybrid screening, two transcription factors IbNAC1 (no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), and cup-shaped cotyledon (CUC)) and IbWRKY1 were isolated, which interact with the sporamin promoter fragment of SWRE (sporamin wounding-responsive element) regulatory sequences. Exogenous application of MeJA (methyl jasmonate), SA and DIECA (diethyldithiocarbamic acid, JAs biosynthesis inhibitor) on sweet potato leaves was employed, and the results revealed that IbNAC1 mediated the expression of sporamin through a JA-dependent signaling pathway upon MW, whereas both IbNAC1 and IbWRKY1 coordinately regulated sporamin expression through JA- and SA-dependent pathways upon HA. Transcriptome analysis identified MYC2/4 and JAZ2/TIFY10A (jasmonate ZIM/tify-domain), the repressor and activator of JA and SA signaling among others, as the genes that play an intermediate role in the JA and SA pathways, and these results were further validated by qRT-PCR (quantitative real-time polymerase chain reaction). CONCLUSION: This work has improved our understanding of the differential regulatory mechanism of sporamin expression. Our study illustrates that sweet potato sporamin expression is differentially induced upon abiotic MW and biotic HA that involves IbNAC1 and IbWRKY1 and is dependent on the JA and SA signaling pathways. Thus, we established a model to address the plant-wounding response upon physical and biotic damage"
Keywords:"Animals Antioxidants/metabolism Base Sequence Cyclopentanes/metabolism/pharmacology DNA-Binding Proteins/metabolism Gene Expression Profiling *Gene Expression Regulation, Plant/drug effects Gene Ontology Herbivory/drug effects/*genetics Ipomoea batatas/dr;"
Notes:"MedlineRajendran, SenthilKumar Lin, I-Winnie Chen, Mei-Ju Chen, Chien-Yu Yeh, Kai-Wun eng Research Support, Non-U.S. Gov't England 2014/04/30 BMC Plant Biol. 2014 Apr 28; 14:112. doi: 10.1186/1471-2229-14-112"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024