Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractComparison of mutagenicity and calf thymus DNA adducts formed by the particulate and semivolatile fractions of vehicle exhausts    Next AbstractThe impact of CYP2E1 genetic variability on risk assessment of VOC mixtures »

Mutagenesis


Title:DNA binding of polycyclic aromatic hydrocarbons in a human bronchial epithelial cell line treated with diesel and gasoline particulate extracts and benzo[a]pyrene
Author(s):Pohjola SK; Lappi M; Honkanen M; Rantanen L; Savela K;
Address:"Finnish Institute of Occupational Health, Helsinki, Finland"
Journal Title:Mutagenesis
Year:2003
Volume:18
Issue:5
Page Number:429 - 438
DOI: 10.1093/mutage/geg021
ISSN/ISBN:0267-8357 (Print) 0267-8357 (Linking)
Abstract:"Particulate matter of vehicle exhaust is known to contain carcinogenic compounds such as polycyclic aromatic hydrocarbons (PAH) and is suggested to increase lung cancer risk in humans. This study examines the differences in diesel and gasoline-derived PAH binding to DNA in a human bronchial epithelial cell line (BEAS-2B). Particulate matter (PM) of gasoline exhaust was collected from passenger cars on filters and semi-volatile compounds on polyurethane foam (PUF). The soluble organic fraction (SOF) extracted from the particles was used to expose the cells and to perform PAH analysis. Gasoline extracts, benzo[a]pyrene (B[a]P) and reference materials (SRM 1650 and 1587) were used to study dose-dependent adduct formation in BEAS-2B cells. The levels of DNA adducts were in good accord with the 10 DNA adduct-forming PAH concentrations analyzed in the extracts. Gasoline extracts, SRM 1650, SRM 1587 and B[a]P formed DNA adducts dose-dependently in BEAS-2B cells. The time-dependent DNA adduct formation of 5.0 micro M B[a]P was lower than that of 2.5 micro M B[a]P. The results of this study indicate that reformulated and standard diesel fuels formed about 11- and 31-fold more adducts than gasoline, respectively, when PAH-DNA adduct levels were calculated on an emission basis (adducts/mg PM/km), whereas on a particulate basis (adducts/mg PM) no difference between the diesel and gasoline extracts was observed. We conclude that the genotoxicity of diesel fuel is based on higher particulate emission rates compared to gasoline emission and although the concentration of PAH compounds was higher in diesel particulate extracts, DNA binding by the gasoline particulate-bound PAH compounds was more pronounced than that by the diesel particulate-bound PAH compounds"
Keywords:"Air Pollutants/toxicity Benzo(a)pyrene/*toxicity Bronchi/cytology/drug effects Cell Death/drug effects Cell Line DNA/*metabolism DNA Adducts/metabolism Dose-Response Relationship, Drug Epithelial Cells/drug effects Gasoline/*toxicity Humans Polycyclic Aro;"
Notes:"MedlinePohjola, Sanna K Lappi, Maija Honkanen, Markku Rantanen, Leena Savela, Kirsti eng Research Support, Non-U.S. Gov't England 2003/09/10 Mutagenesis. 2003 Sep; 18(5):429-38. doi: 10.1093/mutage/geg021"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024