Title: | Directional locomotion of C. elegans in the absence of external stimuli |
Author(s): | Peliti M; Chuang JS; Shaham S; |
Address: | "Laboratory of Developmental Genetics, The Rockefeller University, New York, New York, United States of America" |
DOI: | 10.1371/journal.pone.0078535 |
ISSN/ISBN: | 1932-6203 (Electronic) 1932-6203 (Linking) |
Abstract: | "Many organisms respond to food deprivation by altering their pattern of movement, often in ways that appear to facilitate dispersal. While the behavior of the nematode C. elegans in the presence of attractants has been characterized, long-range movement in the absence of external stimuli has not been examined in this animal. Here we investigate the movement pattern of individual C. elegans over times of approximately 1 hour after removal from food, using two custom imaging set-ups that allow us to track animals on large agar surfaces of 22 cmx22 cm. We find that a sizeable fraction of the observed trajectories display directed motion over tens of minutes. Remarkably, this directional persistence is achieved despite a local orientation memory that decays on the scale of about one minute. Furthermore, we find that such trajectories cannot be accounted for by simple random, isotropic models of animal locomotion. This directional behavior requires sensory neurons, but appears to be independent of known sensory signal-transduction pathways. Our results suggest that long-range directional behavior of C. elegans may not be driven by sensory cues" |
Keywords: | "Animals Animals, Genetically Modified Behavior, Animal/*physiology Caenorhabditis elegans/*physiology Caenorhabditis elegans Proteins/*genetics/metabolism Chemotaxis/physiology Cues Food Deprivation/physiology Gene Expression Genotype Locomotion/*physiolo;" |
Notes: | "MedlinePeliti, Margherita Chuang, John S Shaham, Shai eng R01 NS073121/NS/NINDS NIH HHS/ Research Support, N.I.H., Extramural 2013/11/14 PLoS One. 2013 Nov 5; 8(11):e78535. doi: 10.1371/journal.pone.0078535. eCollection 2013" |