Title: | Natural Source-Based Graphene as Sensitising Agents for Air Quality Monitoring |
Author(s): | Parvizi R; Azad S; Dashtian K; Ghaedi M; Heidari H; |
Address: | "Department of Physics, College of Sciences, Yasouj University, Yasouj, 75914-353, Iran. parvizi.r@yu.ac.ir. Department of Physics, College of Sciences, Yasouj University, Yasouj, 75914-353, Iran. Chemistry Department, Yasouj University, Yasouj, 75914-353, Iran. School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom. hadi.heidari@glasgow.ac.uk" |
DOI: | 10.1038/s41598-019-40433-9 |
ISSN/ISBN: | 2045-2322 (Electronic) 2045-2322 (Linking) |
Abstract: | "Natural carbon powder has been used as a precursor to prepare two main types of sensitising agents of nitrogen-doped carbon nanoparticles (N-CNPs) and nitrogen-doped graphene quantum dots coupled to nanosheets (N-GQDs-NSs) by using simple treatments of chemical oxidation and centrifugation separation. Characterization based on FTIR, XPS, XRD, Raman spectroscopy, FE-SEM, HR-TEM, AFM, UV-Vis and FL, revealed successful doping carbon nanoparticle with nitrogen with an average plane dimension of 50 nm and relatively smooth surface. The versatility of the prepared samples as sensitising agents was developed and established by exploiting its ability for detection of volatile organic compounds via simple optical fibre based sensing configuration. The comparative experimental studies on the proposed sensor performance indicate fast response achieved at a few tens of seconds and excellent repeatability in exposure to the methanol vapour. The low limit of detection of 4.3, 4.9 and 10.5 ppm was obtained in exposure to the methanol, ethanol and propanol vapours, respectively, in the atmosphere condition. This study gives insights into the chemical/physical mechanism of an enhanced economic optical fibre based gas sensor and illustrates it for diverse sensing applications, especially for chemical vapour remote detection and future air quality monitoring" |
Notes: | "PubMed-not-MEDLINEParvizi, R Azad, S Dashtian, K Ghaedi, M Heidari, H eng Research Support, Non-U.S. Gov't England 2019/03/09 Sci Rep. 2019 Mar 7; 9(1):3798. doi: 10.1038/s41598-019-40433-9" |