Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Characterization of Aplysia attractin, the first water-borne peptide pheromone in invertebrates"    Next AbstractCyclodextrins as an encapsulation molecular strategy for volatile organic compounds- Pharmaceutical applications »

Biol Bull


Title:"Behavioral characterization of attractin, a water-borne peptide pheromone in the genus aplysia"
Author(s):Painter SD; Clough B; Black S; Nagle GT;
Address:"The Marine Biomedical Institute and the Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston, Texas 77555-1069, USA. sdpainter@houston.rr.com"
Journal Title:Biol Bull
Year:2003
Volume:205
Issue:1
Page Number:16 - 25
DOI: 10.2307/1543441
ISSN/ISBN:0006-3185 (Print) 0006-3185 (Linking)
Abstract:"Pheromones play a significant role in coordinating reproductive activity in many animals, including opisthobranch molluscs of the genus APLYSIA: Although solitary during most of the year, these simultaneous hermaphrodites gather into breeding aggregations during the reproductive season. The aggregations contain both mating and egg-laying animals and are associated with masses of egg cordons. The egg cordons are a source of pheromones that attract other Aplysia to the area, reduce their latency to mating, and induce egg laying. One of these water-borne egg cordon pheromones ('attractin') has been characterized and shown to be attractive in T-maze assays. Attractin is the first water-borne peptide pheromone characterized in invertebrates. In the current studies, behavioral assays were used to better characterize the attraction, and to examine whether attractin can induce mating. Although the two activities could be related (i.e., attraction occurring because animals were looking for a partner), this was not tested. T-maze assays showed that attractin works as part of a bouquet of odors: the peptide is attractive only when Aplysia brasiliana is part of the stimulus. The animal does not need to be a conspecific, perhaps explaining why multiple species may be associated with one aggregation. Native and recombinant attractin are equally attractive, verifying that N-glycosylation at residue 8 is not required for attraction. Mating studies showed that both native and recombinant attractin reduce the latency to mating. The effects are larger when hermaphroditic mating is considered: in addition to reducing latency, attractin doubles the number of pairs mating as hermaphrodites. The effect may result from attractin stimulating both animals to mate as males and would be consistent with behaviors previously seen in the T-maze. Attractin may thus be contributing to the formation of copulatory chains and rings seen in aggregations in the field. These results may be interpreted in two ways: (1). attractin has multiple activities that contribute to the establishment and maintenance of the aggregation; or (2). the induced desire to mate may make attractin attractive when it is presented in conjunction with an animal. In either case, the results open the door for cellular and molecular studies of mechanism of action"
Keywords:"Amino Acid Sequence Animals Aplysia/*physiology Disorders of Sex Development Glycoproteins/*chemistry/physiology Molecular Sequence Data Pheromones/*chemistry/physiology Reproduction/physiology Sexual Behavior, Animal/*physiology Texas;"
Notes:"MedlinePainter, Sherry D Clough, Bret Black, Sara Nagle, Gregg T eng Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2003/08/15 Biol Bull. 2003 Aug; 205(1):16-25. doi: 10.2307/1543441"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 17-11-2024