Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMolecular and ecological plant defense responses along an elevational gradient in a boreal ecosystem    Next AbstractMating disruption of pea mothCydia nigricana F. (lepidoptera: Tortricidae) by a repellent blend of sex pheromone and attraction inhibitors »

J Chem Ecol


Title:Field attractants for Pachnoda interrupta selected by means of GC-EAD and single sensillum screening
Author(s):Bengtsson JM; Wolde-Hawariat Y; Khbaish H; Negash M; Jembere B; Seyoum E; Hansson BS; Larsson MC; Hillbur Y;
Address:"Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden. Jonas.Bengtsson@ltj.slu.se"
Journal Title:J Chem Ecol
Year:2009
Volume:20090911
Issue:9
Page Number:1063 - 1076
DOI: 10.1007/s10886-009-9684-7
ISSN/ISBN:1573-1561 (Electronic) 0098-0331 (Print) 0098-0331 (Linking)
Abstract:"The sorghum chafer, Pachnoda interrupta Olivier (Coleoptera: Scarabaeidae: Cetoniinae), is a key pest on sorghum, Sorghum bicolor (L.) Moench (Poaceae), in Ethiopia. At present there is a lack of efficient control methods. Trapping shows promise for reduction of the pest population, but would benefit from the development of attractive lures. To find attractants that could be used for control of P. interrupta, either by mass trapping or by monitoring as part of integrated pest management, we screened headspace collections of sorghum and the highly attractive weed Abutilon figarianum Webb (Malvaceae) for antennal activity using gas chromatograph-coupled electroantennographic detection (GC-EAD). Compounds active in GC-EAD were identified by combined gas chromatography and mass spectrometry (GC-MS). Field trapping suggested that attraction is governed by a few influential compounds, rather than specific odor blends. Synthetic sorghum and abutilon odor blends were attractive, but neither blend outperformed the previously tested attractants eugenol and methyl salicylate, of which the latter also was part of the abutilon blend. The strong influence of single compounds led us to search for novel attractive compounds, and to investigate the role of individual olfactory receptor neurons (ORNs) in the perception of kairomones. We screened the response characteristics of ORNs to 82 putative kairomones in single sensillum recordings (SSR), and found a number of key ligand candidates for specific classes of ORNs. Out of these key ligand candidates, six previously untested compounds were selected for field trapping trials: anethole, benzaldehyde, racemic 2,3-butanediol, isoamyl alcohol, methyl benzoate and methyl octanoate. The compounds were selected on the basis that they activated different classes of ORNs, thus allowing us to test potential kairomones that activate large non-overlapping populations of the peripheral olfactory system, while avoiding redundant multiple activations of the same ORN type. Field trapping results revealed that racemic 2,3-butanediol is a powerful novel attractant for P. interrupta"
Keywords:"Animals Butylene Glycols/chemistry/pharmacology Chromatography, Gas Coleoptera/*physiology Gas Chromatography-Mass Spectrometry Malvaceae/chemistry Odorants Olfactory Receptor Neurons/physiology Pest Control Pheromones/chemistry/pharmacology Volatilizatio;"
Notes:"MedlineBengtsson, Jonas M Wolde-Hawariat, Yitbarek Khbaish, Hamida Negash, Merid Jembere, Bekele Seyoum, Emiru Hansson, Bill S Larsson, Mattias C Hillbur, Ylva eng Research Support, Non-U.S. Gov't 2009/09/22 J Chem Ecol. 2009 Sep; 35(9):1063-76. doi: 10.1007/s10886-009-9684-7. Epub 2009 Sep 11"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 21-11-2024