Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractBehavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends    Next AbstractCombined enhancements of temperature and UVB influence growth and phenolics in clones of the sexually dimorphic Salix myrsinifolia »

Parasit Vectors


Title:Linalool oxide: generalist plant based lure for mosquito disease vectors
Author(s):Nyasembe VO; Tchouassi DP; Mbogo CM; Sole CL; Pirk C; Torto B;
Address:"Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya. vnyasembe@icipe.org. Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya. dtchouassi@icipe.org. KEMRI & Public Health Department, Centre for Geographic Medicine Research - Coast, KEMRI - Wellcome Trust Research Programme, Nairobi, Kenya. CMbogo@kemri-wellcome.org. Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa. clsole@zoology.up.ac.za. Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa. cwwpirk@zoology.up.ac.za. Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya. btorto@icipe.org"
Journal Title:Parasit Vectors
Year:2015
Volume:20151109
Issue:
Page Number:581 -
DOI: 10.1186/s13071-015-1184-8
ISSN/ISBN:1756-3305 (Electronic) 1756-3305 (Linking)
Abstract:"BACKGROUND: Lack of effective vaccines and therapeutics for important arboviral diseases such as Rift Valley fever (RVF) and dengue, necessitates continuous monitoring of vector populations for infections in them. Plant-based lures as surveillance tools has the potential of targeting mosquitoes of both sexes and females of varied physiological states; yet such lures are lacking for vectors of these diseases. Here, we present evidence of the effectiveness of linalool oxide (LO), a single plant-based lure previously developed for malaria vectors in trapping RVF vectors, Aedes mcintoshi and Aedes ochraceus, and dengue vector, Aedes aegypti. METHODS: For RVF vectors, we used CDC traps to evaluate the performance of LO against three vertebrate-based lures: CO2 (dry ice), BioGent (BG) lure, and HONAD (a blend of aldehydes) in 2 experiments with Completely Randomized design: 1) using unlit CDC traps baited separately with LO, HONAD and BG-lure, and unlit CDC trap + CO2 and lit CDC trap as controls, 2) similar treatments but with inclusion of CO2 to all the traps. For dengue vectors, LO was evaluated against BG lure using BG sentinel traps, in a 3 x 6 Latin Square design, first as single lures and then combined with CO2 and traps baited with CO2 included as controls. Trap captures were compared between the treatments using Chi square and GLM. RESULTS: Low captures of RVF vectors were recorded for all lures in the absence of CO2 with no significant difference between them. When combined with CO2, LO performance in trapping these vectors was comparable to BG-lure and HONAD but it was less effective than the lit CDC trap. In the absence of CO2, LO performed comparably with the BG-lure in trapping female Ae. aegypti, but with significantly higher males recorded in traps baited with the plant-based lure. When CO2 was added, LO was significantly better than the BG-lure with a 2.8- fold increase in captures of male Ae. aegypti. CONCLUSIONS: These results highlight the potential of LO as a generalist plant-based lure for mosquito disease vectors, pending further assessment of possible specificity in their response profile to the different stereoisomers of this compound"
Keywords:Acyclic Monoterpenes Aedes/*drug effects Animals Cyclohexanols/*pharmacology *Disease Vectors Monoterpenes/*pharmacology Pheromones/*pharmacology Random Allocation Trityl Compounds/*pharmacology;
Notes:"MedlineNyasembe, Vincent O Tchouassi, David P Mbogo, Charles M Sole, Catherine L Pirk, Christian Torto, Baldwyn eng 092654/Wellcome Trust/United Kingdom Research Support, Non-U.S. Gov't England 2015/11/11 Parasit Vectors. 2015 Nov 9; 8:581. doi: 10.1186/s13071-015-1184-8"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 18-11-2024