Title: | A monolithic photonic microcantilever device for in situ monitoring of volatile compounds |
Author(s): | Misiakos K; Raptis I; Gerardino A; Contopanagos H; Kitsara M; |
Address: | "Institute of Microelectronics, NCSR 'Demokritos', 15310, Athens, Greece. misiakos@imel.demokritos.gr" |
ISSN/ISBN: | 1473-0197 (Print) 1473-0189 (Linking) |
Abstract: | "A monolithic photonic microcantilever device is presented comprising silicon light sources and detectors self-aligned to suspended silicon nitride waveguides all integrated into the same silicon chip. A silicon nitride waveguide optically links a silicon light emitting diode to a detector. Then, the optocoupler releases a localized formation of resist-silicon nitride cantilevers through e-beam lithography, dry etching and precisely controlled wet etching through a special microfluidic set-up. Fine micro-optical sensing functions are performed without the need for any off-chip optics. As the bimaterial microcantilevers are deflected by the stressed polymer film, the disrupted waveguide acts like a photonic switch. Cantilever deflections in the order of 1 A caused by thickness variations in the order of 0.005 A are detectable following changes in the physicochemical factors affecting the polymer film thickness. Such factors include the sorption of volatile compounds and through a proper set-up the response to certain vapor concentrations is monitored in real time" |
Keywords: | Computer-Aided Design Equipment Design Equipment Failure Analysis Micro-Electrical-Mechanical Systems/*instrumentation Microchemistry/*instrumentation Microfluidic Analytical Techniques/*instrumentation Photometry/*instrumentation Photons Reproducibility; |
Notes: | "MedlineMisiakos, Konstantinos Raptis, Ioannis Gerardino, Annamaria Contopanagos, Harry Kitsara, Maria eng Research Support, Non-U.S. Gov't England 2009/04/17 Lab Chip. 2009 May 7; 9(9):1261-6. doi: 10.1039/b818989g. Epub 2009 Feb 10" |