Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Contributions by Host Trees and Insect Activity to Bacterial Communities in Dendroctonus valens (Coleoptera: Curculionidae) Galleries, and Their High Overlap With Other Microbial Assemblages of Bark Beetles"    Next AbstractHow should the psychological well-being of zoo elephants be objectively investigated? »

Plant Cell Environ


Title:Anatomical defences against bark beetles relate to degree of historical exposure between species and are allocated independently of chemical defences within trees
Author(s):Mason CJ; Keefover-Ring K; Villari C; Klutsch JG; Cook S; Bonello P; Erbilgin N; Raffa KF; Townsend PA;
Address:"Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania. Departments of Botany and Geography, University of Wisconsin-Madison, Madison, Wisconsin. Department of Plant Pathology, The Ohio State University, Columbus, Ohio. Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada. Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho. Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin. Departments of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin"
Journal Title:Plant Cell Environ
Year:2019
Volume:20181125
Issue:2
Page Number:633 - 646
DOI: 10.1111/pce.13449
ISSN/ISBN:1365-3040 (Electronic) 0140-7791 (Linking)
Abstract:"Conifers possess chemical and anatomical defences against tree-killing bark beetles that feed in their phloem. Resins accumulating at attack sites can delay and entomb beetles while toxins reach lethal levels. Trees with high concentrations of metabolites active against bark beetle-microbial complexes, and more extensive resin ducts, achieve greater survival. It is unknown if and how conifers integrate chemical and anatomical components of defence or how these capabilities vary with historical exposure. We compared linkages between phloem chemistry and tree ring anatomy of two mountain pine beetle hosts. Lodgepole pine, a mid-elevation species, has had extensive, continual contact with this herbivore, whereas high-elevation whitebark pines have historically had intermittent exposure that is increasing with warming climate. Lodgepole pine had more and larger resin ducts. In both species, anatomical defences were positively related to tree growth and nutrients. Within-tree constitutive and induced concentrations of compounds bioactive against bark beetles and symbionts were largely unrelated to resin duct abundance and size. Fewer anatomical defences in the semi-naive compared with the continually exposed host concurs with directional differences in chemical defences. Partially uncoupling chemical and morphological antiherbivore traits may enable trees to confront beetles with more diverse defence permutations that interact to resist attack"
Keywords:"Animals *Herbivory Phloem/metabolism Pinus/metabolism/*physiology Plant Bark Resins, Plant/*metabolism Trees/metabolism/*physiology *Weevils carbohydrates climate change herbivory lodgepole minerals phenolics plant defence resin ducts terpenes whitebark;"
Notes:"MedlineMason, Charles J Keefover-Ring, Ken Villari, Caterina Klutsch, Jennifer G Cook, Stephen Bonello, Pierluigi Erbilgin, Nadir Raffa, Kenneth F Townsend, Philip A eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2018/11/27 Plant Cell Environ. 2019 Feb; 42(2):633-646. doi: 10.1111/pce.13449. Epub 2018 Nov 25"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 17-01-2025