Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractHazardous volatile organic compounds in ambient air of China    Next Abstract"Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China" »

Environ Sci Technol


Title:Evidence for Reducing Volatile Organic Compounds to Improve Air Quality from Concurrent Observations and In Situ Simulations at 10 Stations in Eastern China
Author(s):Lyu X; Guo H; Zou Q; Li K; Xiong E; Zhou B; Guo P; Jiang F; Tian X;
Address:"Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 00000, China. Zhejiang Ecological and Environmental Monitoring Centre, Hangzhou 310012, China. Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou 3100212, China. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China. International Institute for Earth System Science, Nanjing University, Nanjing 210023, China"
Journal Title:Environ Sci Technol
Year:2022
Volume:20221031
Issue:22
Page Number:15356 - 15364
DOI: 10.1021/acs.est.2c04340
ISSN/ISBN:1520-5851 (Electronic) 0013-936X (Linking)
Abstract:"Ground-level ozone (O(3)) has been an emerging air pollution in China and interacts with fine particulate matters (PM(2.5)). We synthesized observations of O(3) and its precursors in two summer months of 2020 at 10 sites in the Zhejiang province, East China and simulated the in situ photochemistry. O(3) pollution in the northeastern Zhejiang province was more serious than that in the southwest. The site-average daytime O(3) increment correlated well (R(2) = 0.73) with the total reactivity of volatile organic compounds (VOCs) and carbon monoxide toward the hydroxyl radical (OH) in urban areas. Model simulation revealed that the main function of nitrogen oxides (NO(x)) at the rural sites where isoprene accounted for >85% of OH reactivity of VOCs was to facilitate the radical cycling. With NO(x) reduction from 0 to 90%, the self-reactions between peroxy radicals (Self-Rxns), a proven pathway for secondary organic aerosol formation, were intensified by up to 23-fold in a NO(x)-rich environment. In contrast, reducing VOCs could weaken the Self-Rxns while reducing O(3) production rate and atmospheric oxidation capacity. This study observes and simulates O(3) chemistry based on extensive measurements in typical Chinese cities, highlighting the necessity of reducing VOCs for co-benefit of O(3) and PM(2.5)"
Keywords:*Volatile Organic Compounds *Air Pollutants/analysis Environmental Monitoring *Air Pollution *Ozone/analysis Particulate Matter China atmospheric oxidation capacity coordinated air pollution control ground-level ozone in situ photochemistry volatile organ;
Notes:"MedlineLyu, Xiaopu Guo, Hai Zou, Qiaoli Li, Ke Xiong, Enyu Zhou, Beining Guo, Peiwen Jiang, Fei Tian, Xudong eng Research Support, Non-U.S. Gov't 2022/11/01 Environ Sci Technol. 2022 Nov 15; 56(22):15356-15364. doi: 10.1021/acs.est.2c04340. Epub 2022 Oct 31"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024