Title: | Hollow Spherical ZnO with Mesoporous Shell for Highly Enhanced Gas Sensitivity and Selectivity |
Author(s): | Liu Y; Liu J; Yu W; Peng Y; Yan W; Li Y; Zhang J; |
Address: | "Mechanics of Functional Materials Division, Department of Materials Science, TU Darmstadt, Otto-Berndt-Strasse 3, Darmstadt, 64287, Germany. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China. School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China. College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China" |
ISSN/ISBN: | 1861-471X (Electronic) 1861-471X (Linking) |
Abstract: | "In this work, ZnO hollow spheres (ZnO-HS) with mesoporous shells were successfully synthesized via a facile two-step method. The hollow structure provides sufficient space and active sites for adsorbing gases. The mesoporous shells assembled from nanoparticles facilitate the diffusion of gas molecules into the inner space and ensure full contact with ZnO. Consequently, ZnO-HS-600 gas sensors deliver a satisfactory response to volatile organic compounds (VOCs) and an excellent response-recovery time at the optimal working temperature of 300 degrees C, i. e., acetone (9 and 5 s), ethanol (10 and 6 s), and methanol (12 and 14 s), respectively. By combining the theoretical calculation and the experimental observation, the relationship between the structure and performance has been established. The results demonstrate that ZnO-HS-600 materials meet the regional depletion condition, i. e., L >/= 2L(s) , further explaining its superior response-recovery time. Our work provides a prospective strategy for high-performance ZnO gas sensors via structural design and theoretical calculations" |
Keywords: | Acetone Gases/chemistry *Nanoparticles Prospective Studies *Zinc Oxide/chemistry ZnO hollow spheres gas sensor the mesoporous shell the space charge layer impedance volatile organic compounds; |
Notes: | "MedlineLiu, Yao Liu, Jing Yu, Wenbei Peng, Yao Yan, Wei Li, Yu Zhang, Jiujun eng China Scholarship Council (CSC)/ 2016YFA0202602/National Key R&D Program of China/ U20 A20122/National Natural Science Foundation of China/ 52103285/National Natural Science Foundation of China/ B20002/111 National project/ 2020CFB416/Natural Science Foundation of Hubei Province/ WUT: 2021III016GX/Fundamental Research Funds for the Central Universities/ Youth Innovation Research Fund project of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology)/ Germany 2022/06/02 Chem Asian J. 2022 Jul 15; 17(14):e202200324. doi: 10.1002/asia.202200324. Epub 2022 Jun 10" |