Title: | Negative-ion field desorption revitalized by using liquid injection field desorption/ionization-mass spectrometry on recent instrumentation |
Author(s): | Linden MH; Linden HB; Gross JH; |
Address: | "Linden CMS, Auf dem Berge 25, 28844, Weyhe, Germany. Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany. juergen.gross@oci.uni-heidelberg.de" |
DOI: | 10.1007/s00216-021-03641-9 |
ISSN/ISBN: | 1618-2650 (Electronic) 1618-2642 (Print) 1618-2642 (Linking) |
Abstract: | "Field ionization (FI), field desorption (FD), and liquid injection field desorption/ionization (LIFDI) provide soft positive ionization of gaseous (FI) or condensed phase analytes (FD and LIFDI). In contrast to the well-established positive-ion mode, negative-ion FI or FD have remained rare exceptions. LIFDI provides sample deposition under inert conditions, i.e., the exclusion of atmospheric oxygen and water. Thus, negative-ion LIFDI could potentially be applied to highly sensitive anionic compounds like catalytically active transition metal complexes. This work explores the potential of negative-ion mode using modern mass spectrometers in combination with an LIFDI source and presents first results of the application of negative-ion LIFDI-MS. Experiments were performed on two orthogonal-acceleration time-of-flight (oaTOF) instruments, a JEOL AccuTOF GCx and a Waters Micromass Q-TOF Premier equipped with LIFDI sources from Linden CMS. The examples presented include four ionic liquids (ILs), i.e., N-butyl-3-methylpyridinium dicyanamide, 1-butyl-3-methylimidazolium tricyanomethide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate), 3-(trifluoromethyl)-phenol, dichloromethane, iodine, polyethylene glycol diacid, perfluorononanoic acid, anionic surfactants, a tetraphosphazene silanol-silanolate, and two bis(catecholato)silanes. Volatile samples were delivered as vapors via the sample transfer capillary of the LIFDI probe or via a reservoir inlet. Condensed phase samples were applied to the emitter as dilute solutions via the sample transfer capillary. The compounds either yielded ions corresponding to their intact anions, A(-), or the [M-H](-) species formed upon deprotonation. This study describes the instrumental setups and the operational parameters for robust operation along with a discussion of the negative-ion LIFDI spectra of a variety of compounds" |
Keywords: | Anionic surfactants Anions Cluster ions Desorption ionization Field desorption Field emitter Field ionization Ionic liquids Ionization process Liquid injection field desorption/ionization Negative ions Soft ionization; |
Notes: | "PubMed-not-MEDLINELinden, Mathias H Linden, H Bernhard Gross, Jurgen H eng Germany 2021/09/09 Anal Bioanal Chem. 2021 Nov; 413(27):6845-6855. doi: 10.1007/s00216-021-03641-9. Epub 2021 Sep 7" |