Title: | Catalytic oxidation of dimethyl phthalate over titania-supported noble metal catalysts |
Author(s): | Liang Y; Li J; He Y; Jiang Z; Shangguan W; |
Address: | "Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China. State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address: zhijiang@sjtu.edu.cn" |
DOI: | 10.1016/j.jhazmat.2020.123274 |
ISSN/ISBN: | 1873-3336 (Electronic) 0304-3894 (Linking) |
Abstract: | "Semi-volatile organic compounds (SVOCs) are organic compounds with the boiling point ranging between 240/260 ?SG and 380/400 ?SG. Detailed knowledge regarding catalytic removal of SVOCs from indoor environment is very limited as it remains challenge to explore such reaction due to the viscosity nature of target contaminants. Here, we established a facile methodology to explore the heterogeneous catalytic oxidation reaction of dimethyl phthalate (DMP), a model SVOC, over the surface of supported catalyst. DMP was found to be gradually oxidized over the surface of titania supported catalysts including palladium (Pd), platinum and ruthenium with increasing temperature. The cleavage of side chain of DMP occurs at 75 ?SG over the surface of Pd/TiO(2), which is significantly lower than that of the other two catalysts. Carbon dioxide was observed as the main product of the catalytic oxidation reaction. However, aromatic products and small molecule products were still observed as side-product in different temperature range. Density functional theory calculations further show that DMP can react with reactive oxygen species to form phthalic acid. While the cleavage of the DMP side chain occurs to form products such as methyl benzoate. This work thus provides basic knowledge about indoor SVOCs catalytic oxidation removal" |
Keywords: | Catalytic oxidation Dmp Indoor SVOCs Pd/TiO(2); |
Notes: | "PubMed-not-MEDLINELiang, Yuting Li, Jiayi He, Yaoyu Jiang, Zhi Shangguan, Wenfeng eng Research Support, Non-U.S. Gov't Netherlands 2020/08/09 J Hazard Mater. 2021 Jan 5; 401:123274. doi: 10.1016/j.jhazmat.2020.123274. Epub 2020 Jun 23" |