Title: | Excited-State Chemistry: Photocatalytic Methanol Oxidation by Uranyl@Zeolite through Oxygen-Centered Radicals |
Author(s): | Li Y; Zhang G; Eugen Schwarz WH; Li J; |
Address: | "Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China. School of Materials & Energy, Guangdong University of Technology, Guangzhou 510006, China. Institute of Applied and Physical Chemistry, University of Bremen, Bremen 28359, Germany. Department of Chemistry, University of Siegen, Siegen 57068, Germany. Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China" |
DOI: | 10.1021/acs.inorgchem.0c00388 |
ISSN/ISBN: | 1520-510X (Electronic) 0020-1669 (Linking) |
Abstract: | "We have elucidated the complex reaction network of partial methanol oxidation, H(3)COH + O(2) --> H(2)CO + H(2)O(2), at a visible-light-activated actinide photocatalyst. The reaction inertness of C-H bonds and O horizontal lineO diradicals at ambient conditions is overcome through catalysis by photoexcited uranyl units (*UO(2)(2+)) anchored on a mesoporous silicate. The electronic ground- and excited-state energy hypersurfaces are investigated with quasirelativistic density-functional and ab initio correlated wave function approaches. Our study suggests that the molecular cluster can react on the excited energy surface due to the longevity of excited uranyl, typical for f-element compounds. The theoretically predicted energy profiles, chemical intermediates, related radicals, and product species are consistent with various experimental findings. The uranyl excitation opens various reaction pathways for the oxidation of volatile organic compounds (VOCs) by 'hole-driven hydrogen transfer' (HDHT) through several exothermic steps over low activation barriers toward environmentally clean or chemically interesting products. Quantum-chemical modeling reveals the high efficiency of the uranyl photocatalysis and directs the way to further understanding and improvement of VOC degradation, chemical synthesis, and biologic photochemical interactions between uranyl and the environment" |
Notes: | "PubMed-not-MEDLINELi, Yong Zhang, Guoqing Eugen Schwarz, W H Li, Jun eng 2020/04/21 Inorg Chem. 2020 May 4; 59(9):6287-6300. doi: 10.1021/acs.inorgchem.0c00388. Epub 2020 Apr 20" |